| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwfseqlem4.g |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 2 |
|
pwfseqlem4.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 3 |
|
pwfseqlem4.h |
⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) |
| 4 |
|
pwfseqlem4.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) |
| 5 |
|
pwfseqlem4.k |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
| 6 |
|
pwfseqlem4.d |
⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
| 7 |
|
pwfseqlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑎 = 𝑌 → ( 𝑎 𝐹 𝑠 ) = ( 𝑌 𝐹 𝑠 ) ) |
| 9 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑌 → ( 𝐻 ‘ ( card ‘ 𝑎 ) ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) |
| 10 |
8 9
|
eqeq12d |
⊢ ( 𝑎 = 𝑌 → ( ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ↔ ( 𝑌 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑠 = 𝑅 → ( 𝑌 𝐹 𝑠 ) = ( 𝑌 𝐹 𝑅 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑠 = 𝑅 → ( ( 𝑌 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ↔ ( 𝑌 𝐹 𝑅 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑎 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑠 |
| 16 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 17 |
7 16
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑟 |
| 19 |
13 17 18
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) |
| 20 |
19
|
nfeq1 |
⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) |
| 21 |
|
nfmpo2 |
⊢ Ⅎ 𝑟 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 22 |
7 21
|
nfcxfr |
⊢ Ⅎ 𝑟 𝐹 |
| 23 |
14 22 15
|
nfov |
⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) |
| 24 |
23
|
nfeq1 |
⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) |
| 25 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑟 ) ) |
| 26 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑎 → ( 𝐻 ‘ ( card ‘ 𝑥 ) ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ↔ ( 𝑎 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝑎 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑠 ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ↔ ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) ) |
| 30 |
|
vex |
⊢ 𝑥 ∈ V |
| 31 |
|
vex |
⊢ 𝑟 ∈ V |
| 32 |
|
fvex |
⊢ ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ∈ V |
| 33 |
|
fvex |
⊢ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ V |
| 34 |
32 33
|
ifex |
⊢ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V |
| 35 |
7
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V ) → ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 36 |
30 31 34 35
|
mp3an |
⊢ ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 37 |
|
iftrue |
⊢ ( 𝑥 ∈ Fin → if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ) |
| 38 |
36 37
|
eqtrid |
⊢ ( 𝑥 ∈ Fin → ( 𝑥 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝑟 ∈ 𝑉 ) → ( 𝑥 𝐹 𝑟 ) = ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ) |
| 40 |
13 14 15 20 24 27 29 39
|
vtocl2gaf |
⊢ ( ( 𝑎 ∈ Fin ∧ 𝑠 ∈ 𝑉 ) → ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
| 41 |
10 12 40
|
vtocl2ga |
⊢ ( ( 𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑌 𝐹 𝑅 ) = ( 𝐻 ‘ ( card ‘ 𝑌 ) ) ) |