Metamath Proof Explorer


Theorem pwfseqlem3

Description: Lemma for pwfseq . Using the construction D from pwfseqlem1 , produce a function F that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g ( 𝜑𝐺 : 𝒫 𝐴1-1 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
pwfseqlem4.x ( 𝜑𝑋𝐴 )
pwfseqlem4.h ( 𝜑𝐻 : ω –1-1-onto𝑋 )
pwfseqlem4.ps ( 𝜓 ↔ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) )
pwfseqlem4.k ( ( 𝜑𝜓 ) → 𝐾 : 𝑛 ∈ ω ( 𝑥m 𝑛 ) –1-1𝑥 )
pwfseqlem4.d 𝐷 = ( 𝐺 ‘ { 𝑤𝑥 ∣ ( ( 𝐾𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( 𝐺 ‘ ( 𝐾𝑤 ) ) ) } )
pwfseqlem4.f 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ) )
Assertion pwfseqlem3 ( ( 𝜑𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴𝑥 ) )

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g ( 𝜑𝐺 : 𝒫 𝐴1-1 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
2 pwfseqlem4.x ( 𝜑𝑋𝐴 )
3 pwfseqlem4.h ( 𝜑𝐻 : ω –1-1-onto𝑋 )
4 pwfseqlem4.ps ( 𝜓 ↔ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) )
5 pwfseqlem4.k ( ( 𝜑𝜓 ) → 𝐾 : 𝑛 ∈ ω ( 𝑥m 𝑛 ) –1-1𝑥 )
6 pwfseqlem4.d 𝐷 = ( 𝐺 ‘ { 𝑤𝑥 ∣ ( ( 𝐾𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( 𝐺 ‘ ( 𝐾𝑤 ) ) ) } )
7 pwfseqlem4.f 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ) )
8 vex 𝑥 ∈ V
9 vex 𝑟 ∈ V
10 fvex ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ∈ V
11 fvex ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ V
12 10 11 ifex if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ) ∈ V
13 7 ovmpt4g ( ( 𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ) ∈ V ) → ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ) )
14 8 9 12 13 mp3an ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) )
15 4 simprbi ( 𝜓 → ω ≼ 𝑥 )
16 15 adantl ( ( 𝜑𝜓 ) → ω ≼ 𝑥 )
17 domnsym ( ω ≼ 𝑥 → ¬ 𝑥 ≺ ω )
18 16 17 syl ( ( 𝜑𝜓 ) → ¬ 𝑥 ≺ ω )
19 isfinite ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω )
20 18 19 sylnibr ( ( 𝜑𝜓 ) → ¬ 𝑥 ∈ Fin )
21 20 iffalsed ( ( 𝜑𝜓 ) → if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ) = ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) )
22 14 21 syl5eq ( ( 𝜑𝜓 ) → ( 𝑥 𝐹 𝑟 ) = ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) )
23 1 2 3 4 5 6 pwfseqlem1 ( ( 𝜑𝜓 ) → 𝐷 ∈ ( 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∖ 𝑛 ∈ ω ( 𝑥m 𝑛 ) ) )
24 eldif ( 𝐷 ∈ ( 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∖ 𝑛 ∈ ω ( 𝑥m 𝑛 ) ) ↔ ( 𝐷 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∧ ¬ 𝐷 𝑛 ∈ ω ( 𝑥m 𝑛 ) ) )
25 23 24 sylib ( ( 𝜑𝜓 ) → ( 𝐷 𝑛 ∈ ω ( 𝐴m 𝑛 ) ∧ ¬ 𝐷 𝑛 ∈ ω ( 𝑥m 𝑛 ) ) )
26 25 simpld ( ( 𝜑𝜓 ) → 𝐷 𝑛 ∈ ω ( 𝐴m 𝑛 ) )
27 eliun ( 𝐷 𝑛 ∈ ω ( 𝐴m 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝐷 ∈ ( 𝐴m 𝑛 ) )
28 26 27 sylib ( ( 𝜑𝜓 ) → ∃ 𝑛 ∈ ω 𝐷 ∈ ( 𝐴m 𝑛 ) )
29 elmapi ( 𝐷 ∈ ( 𝐴m 𝑛 ) → 𝐷 : 𝑛𝐴 )
30 29 ad2antll ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → 𝐷 : 𝑛𝐴 )
31 ssiun2 ( 𝑛 ∈ ω → ( 𝑥m 𝑛 ) ⊆ 𝑛 ∈ ω ( 𝑥m 𝑛 ) )
32 31 ad2antrl ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝑥m 𝑛 ) ⊆ 𝑛 ∈ ω ( 𝑥m 𝑛 ) )
33 25 simprd ( ( 𝜑𝜓 ) → ¬ 𝐷 𝑛 ∈ ω ( 𝑥m 𝑛 ) )
34 33 adantr ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ¬ 𝐷 𝑛 ∈ ω ( 𝑥m 𝑛 ) )
35 32 34 ssneldd ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ¬ 𝐷 ∈ ( 𝑥m 𝑛 ) )
36 vex 𝑛 ∈ V
37 8 36 elmap ( 𝐷 ∈ ( 𝑥m 𝑛 ) ↔ 𝐷 : 𝑛𝑥 )
38 ffn ( 𝐷 : 𝑛𝐴𝐷 Fn 𝑛 )
39 ffnfv ( 𝐷 : 𝑛𝑥 ↔ ( 𝐷 Fn 𝑛 ∧ ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
40 39 baib ( 𝐷 Fn 𝑛 → ( 𝐷 : 𝑛𝑥 ↔ ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
41 30 38 40 3syl ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝐷 : 𝑛𝑥 ↔ ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
42 37 41 syl5bb ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝐷 ∈ ( 𝑥m 𝑛 ) ↔ ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
43 35 42 mtbid ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ¬ ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 )
44 nnon ( 𝑛 ∈ ω → 𝑛 ∈ On )
45 44 ad2antrl ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → 𝑛 ∈ On )
46 ssrab2 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ⊆ ω
47 omsson ω ⊆ On
48 46 47 sstri { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ⊆ On
49 ordom Ord ω
50 simprl ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → 𝑛 ∈ ω )
51 ordelss ( ( Ord ω ∧ 𝑛 ∈ ω ) → 𝑛 ⊆ ω )
52 49 50 51 sylancr ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → 𝑛 ⊆ ω )
53 rexnal ( ∃ 𝑧𝑛 ¬ ( 𝐷𝑧 ) ∈ 𝑥 ↔ ¬ ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 )
54 43 53 sylibr ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ∃ 𝑧𝑛 ¬ ( 𝐷𝑧 ) ∈ 𝑥 )
55 ssrexv ( 𝑛 ⊆ ω → ( ∃ 𝑧𝑛 ¬ ( 𝐷𝑧 ) ∈ 𝑥 → ∃ 𝑧 ∈ ω ¬ ( 𝐷𝑧 ) ∈ 𝑥 ) )
56 52 54 55 sylc ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ∃ 𝑧 ∈ ω ¬ ( 𝐷𝑧 ) ∈ 𝑥 )
57 rabn0 ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑧 ∈ ω ¬ ( 𝐷𝑧 ) ∈ 𝑥 )
58 56 57 sylibr ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ≠ ∅ )
59 onint ( ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ⊆ On ∧ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ≠ ∅ ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } )
60 48 58 59 sylancr ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } )
61 48 60 sseldi ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ On )
62 ontri1 ( ( 𝑛 ∈ On ∧ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ On ) → ( 𝑛 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ↔ ¬ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) )
63 45 61 62 syl2anc ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝑛 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ↔ ¬ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) )
64 ssintrab ( 𝑛 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ↔ ∀ 𝑧 ∈ ω ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) )
65 nnon ( 𝑧 ∈ ω → 𝑧 ∈ On )
66 ontri1 ( ( 𝑛 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑛𝑧 ↔ ¬ 𝑧𝑛 ) )
67 44 65 66 syl2an ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑛𝑧 ↔ ¬ 𝑧𝑛 ) )
68 67 imbi2d ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) ↔ ( ¬ ( 𝐷𝑧 ) ∈ 𝑥 → ¬ 𝑧𝑛 ) ) )
69 con34b ( ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ↔ ( ¬ ( 𝐷𝑧 ) ∈ 𝑥 → ¬ 𝑧𝑛 ) )
70 68 69 bitr4di ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) ↔ ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ) )
71 70 pm5.74da ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) ) ↔ ( 𝑧 ∈ ω → ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ) ) )
72 bi2.04 ( ( 𝑧 ∈ ω → ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ) ↔ ( 𝑧𝑛 → ( 𝑧 ∈ ω → ( 𝐷𝑧 ) ∈ 𝑥 ) ) )
73 71 72 bitrdi ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) ) ↔ ( 𝑧𝑛 → ( 𝑧 ∈ ω → ( 𝐷𝑧 ) ∈ 𝑥 ) ) ) )
74 elnn ( ( 𝑧𝑛𝑛 ∈ ω ) → 𝑧 ∈ ω )
75 pm2.27 ( 𝑧 ∈ ω → ( ( 𝑧 ∈ ω → ( 𝐷𝑧 ) ∈ 𝑥 ) → ( 𝐷𝑧 ) ∈ 𝑥 ) )
76 74 75 syl ( ( 𝑧𝑛𝑛 ∈ ω ) → ( ( 𝑧 ∈ ω → ( 𝐷𝑧 ) ∈ 𝑥 ) → ( 𝐷𝑧 ) ∈ 𝑥 ) )
77 76 expcom ( 𝑛 ∈ ω → ( 𝑧𝑛 → ( ( 𝑧 ∈ ω → ( 𝐷𝑧 ) ∈ 𝑥 ) → ( 𝐷𝑧 ) ∈ 𝑥 ) ) )
78 77 a2d ( 𝑛 ∈ ω → ( ( 𝑧𝑛 → ( 𝑧 ∈ ω → ( 𝐷𝑧 ) ∈ 𝑥 ) ) → ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ) )
79 73 78 sylbid ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) ) → ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ) )
80 79 ad2antrl ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) ) → ( 𝑧𝑛 → ( 𝐷𝑧 ) ∈ 𝑥 ) ) )
81 80 ralimdv2 ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( ∀ 𝑧 ∈ ω ( ¬ ( 𝐷𝑧 ) ∈ 𝑥𝑛𝑧 ) → ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
82 64 81 syl5bi ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝑛 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } → ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
83 63 82 sylbird ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( ¬ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ 𝑛 → ∀ 𝑧𝑛 ( 𝐷𝑧 ) ∈ 𝑥 ) )
84 43 83 mt3d ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ 𝑛 )
85 30 84 ffvelrnd ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ 𝐴 )
86 fveq2 ( 𝑦 = { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } → ( 𝐷𝑦 ) = ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) )
87 86 eleq1d ( 𝑦 = { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } → ( ( 𝐷𝑦 ) ∈ 𝑥 ↔ ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) )
88 87 notbid ( 𝑦 = { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } → ( ¬ ( 𝐷𝑦 ) ∈ 𝑥 ↔ ¬ ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) )
89 fveq2 ( 𝑧 = 𝑦 → ( 𝐷𝑧 ) = ( 𝐷𝑦 ) )
90 89 eleq1d ( 𝑧 = 𝑦 → ( ( 𝐷𝑧 ) ∈ 𝑥 ↔ ( 𝐷𝑦 ) ∈ 𝑥 ) )
91 90 notbid ( 𝑧 = 𝑦 → ( ¬ ( 𝐷𝑧 ) ∈ 𝑥 ↔ ¬ ( 𝐷𝑦 ) ∈ 𝑥 ) )
92 91 cbvrabv { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } = { 𝑦 ∈ ω ∣ ¬ ( 𝐷𝑦 ) ∈ 𝑥 }
93 88 92 elrab2 ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ↔ ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ ω ∧ ¬ ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) )
94 93 simprbi ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } → ¬ ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 )
95 60 94 syl ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ¬ ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 )
96 85 95 eldifd ( ( ( 𝜑𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴m 𝑛 ) ) ) → ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ ( 𝐴𝑥 ) )
97 28 96 rexlimddv ( ( 𝜑𝜓 ) → ( 𝐷 { 𝑧 ∈ ω ∣ ¬ ( 𝐷𝑧 ) ∈ 𝑥 } ) ∈ ( 𝐴𝑥 ) )
98 22 97 eqeltrd ( ( 𝜑𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴𝑥 ) )