| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwfseqlem4.g |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 2 |
|
pwfseqlem4.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
| 3 |
|
pwfseqlem4.h |
⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) |
| 4 |
|
pwfseqlem4.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) |
| 5 |
|
pwfseqlem4.k |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
| 6 |
|
pwfseqlem4.d |
⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
| 7 |
|
pwfseqlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 8 |
|
vex |
⊢ 𝑥 ∈ V |
| 9 |
|
vex |
⊢ 𝑟 ∈ V |
| 10 |
|
fvex |
⊢ ( 𝐻 ‘ ( card ‘ 𝑥 ) ) ∈ V |
| 11 |
|
fvex |
⊢ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ V |
| 12 |
10 11
|
ifex |
⊢ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V |
| 13 |
7
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ V ∧ 𝑟 ∈ V ∧ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ∈ V ) → ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
| 14 |
8 9 12 13
|
mp3an |
⊢ ( 𝑥 𝐹 𝑟 ) = if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 15 |
4
|
simprbi |
⊢ ( 𝜓 → ω ≼ 𝑥 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ω ≼ 𝑥 ) |
| 17 |
|
domnsym |
⊢ ( ω ≼ 𝑥 → ¬ 𝑥 ≺ ω ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑥 ≺ ω ) |
| 19 |
|
isfinite |
⊢ ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω ) |
| 20 |
18 19
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑥 ∈ Fin ) |
| 21 |
20
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) = ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 22 |
14 21
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) = ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 23 |
1 2 3 4 5 6
|
pwfseqlem1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |
| 24 |
|
eldif |
⊢ ( 𝐷 ∈ ( ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∖ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ↔ ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ∧ ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) ) |
| 26 |
25
|
simpld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
| 27 |
|
eliun |
⊢ ( 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ↔ ∃ 𝑛 ∈ ω 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∃ 𝑛 ∈ ω 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) |
| 29 |
|
elmapi |
⊢ ( 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) → 𝐷 : 𝑛 ⟶ 𝐴 ) |
| 30 |
29
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝐷 : 𝑛 ⟶ 𝐴 ) |
| 31 |
|
ssiun2 |
⊢ ( 𝑛 ∈ ω → ( 𝑥 ↑m 𝑛 ) ⊆ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 32 |
31
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝑥 ↑m 𝑛 ) ⊆ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 33 |
25
|
simprd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ 𝐷 ∈ ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) ) |
| 35 |
32 34
|
ssneldd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ 𝐷 ∈ ( 𝑥 ↑m 𝑛 ) ) |
| 36 |
|
vex |
⊢ 𝑛 ∈ V |
| 37 |
8 36
|
elmap |
⊢ ( 𝐷 ∈ ( 𝑥 ↑m 𝑛 ) ↔ 𝐷 : 𝑛 ⟶ 𝑥 ) |
| 38 |
|
ffn |
⊢ ( 𝐷 : 𝑛 ⟶ 𝐴 → 𝐷 Fn 𝑛 ) |
| 39 |
|
ffnfv |
⊢ ( 𝐷 : 𝑛 ⟶ 𝑥 ↔ ( 𝐷 Fn 𝑛 ∧ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 40 |
39
|
baib |
⊢ ( 𝐷 Fn 𝑛 → ( 𝐷 : 𝑛 ⟶ 𝑥 ↔ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 41 |
30 38 40
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 : 𝑛 ⟶ 𝑥 ↔ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 42 |
37 41
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 ∈ ( 𝑥 ↑m 𝑛 ) ↔ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 43 |
35 42
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 44 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
| 45 |
44
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ∈ On ) |
| 46 |
|
ssrab2 |
⊢ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ⊆ ω |
| 47 |
|
omsson |
⊢ ω ⊆ On |
| 48 |
46 47
|
sstri |
⊢ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ⊆ On |
| 49 |
|
ordom |
⊢ Ord ω |
| 50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ∈ ω ) |
| 51 |
|
ordelss |
⊢ ( ( Ord ω ∧ 𝑛 ∈ ω ) → 𝑛 ⊆ ω ) |
| 52 |
49 50 51
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → 𝑛 ⊆ ω ) |
| 53 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝑛 ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ↔ ¬ ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 54 |
43 53
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∃ 𝑧 ∈ 𝑛 ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 55 |
|
ssrexv |
⊢ ( 𝑛 ⊆ ω → ( ∃ 𝑧 ∈ 𝑛 ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → ∃ 𝑧 ∈ ω ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 56 |
52 54 55
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∃ 𝑧 ∈ ω ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 57 |
|
rabn0 |
⊢ ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ≠ ∅ ↔ ∃ 𝑧 ∈ ω ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) |
| 58 |
56 57
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ≠ ∅ ) |
| 59 |
|
onint |
⊢ ( ( { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ⊆ On ∧ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ≠ ∅ ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) |
| 60 |
48 58 59
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) |
| 61 |
48 60
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ On ) |
| 62 |
|
ontri1 |
⊢ ( ( 𝑛 ∈ On ∧ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ On ) → ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ¬ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) ) |
| 63 |
45 61 62
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ¬ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) ) |
| 64 |
|
ssintrab |
⊢ ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ∀ 𝑧 ∈ ω ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) |
| 65 |
|
nnon |
⊢ ( 𝑧 ∈ ω → 𝑧 ∈ On ) |
| 66 |
|
ontri1 |
⊢ ( ( 𝑛 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑛 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑛 ) ) |
| 67 |
44 65 66
|
syl2an |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( 𝑛 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑛 ) ) |
| 68 |
67
|
imbi2d |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ↔ ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → ¬ 𝑧 ∈ 𝑛 ) ) ) |
| 69 |
|
con34b |
⊢ ( ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ↔ ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → ¬ 𝑧 ∈ 𝑛 ) ) |
| 70 |
68 69
|
bitr4di |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ↔ ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 71 |
70
|
pm5.74da |
⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) ↔ ( 𝑧 ∈ ω → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) ) |
| 72 |
|
bi2.04 |
⊢ ( ( 𝑧 ∈ ω → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑛 → ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 73 |
71 72
|
bitrdi |
⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) ↔ ( 𝑧 ∈ 𝑛 → ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) ) |
| 74 |
|
elnn |
⊢ ( ( 𝑧 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑧 ∈ ω ) |
| 75 |
|
pm2.27 |
⊢ ( 𝑧 ∈ ω → ( ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 76 |
74 75
|
syl |
⊢ ( ( 𝑧 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → ( ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 77 |
76
|
expcom |
⊢ ( 𝑛 ∈ ω → ( 𝑧 ∈ 𝑛 → ( ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 78 |
77
|
a2d |
⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ 𝑛 → ( 𝑧 ∈ ω → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 79 |
73 78
|
sylbid |
⊢ ( 𝑛 ∈ ω → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 80 |
79
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( ( 𝑧 ∈ ω → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) ) → ( 𝑧 ∈ 𝑛 → ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) ) |
| 81 |
80
|
ralimdv2 |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( ∀ 𝑧 ∈ ω ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 → 𝑛 ⊆ 𝑧 ) → ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 82 |
64 81
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝑛 ⊆ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 83 |
63 82
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( ¬ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 → ∀ 𝑧 ∈ 𝑛 ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ) ) |
| 84 |
43 83
|
mt3d |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ 𝑛 ) |
| 85 |
30 84
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝐴 ) |
| 86 |
|
fveq2 |
⊢ ( 𝑦 = ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ( 𝐷 ‘ 𝑦 ) = ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) |
| 87 |
86
|
eleq1d |
⊢ ( 𝑦 = ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ( ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ↔ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 88 |
87
|
notbid |
⊢ ( 𝑦 = ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ( ¬ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ↔ ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝐷 ‘ 𝑧 ) = ( 𝐷 ‘ 𝑦 ) ) |
| 90 |
89
|
eleq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ↔ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 91 |
90
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 ↔ ¬ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 92 |
91
|
cbvrabv |
⊢ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } = { 𝑦 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑦 ) ∈ 𝑥 } |
| 93 |
88 92
|
elrab2 |
⊢ ( ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ↔ ( ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ ω ∧ ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) ) |
| 94 |
93
|
simprbi |
⊢ ( ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ∈ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } → ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
| 95 |
60 94
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ¬ ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ 𝑥 ) |
| 96 |
85 95
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝑛 ∈ ω ∧ 𝐷 ∈ ( 𝐴 ↑m 𝑛 ) ) ) → ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 97 |
28 96
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 98 |
22 97
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |