Step |
Hyp |
Ref |
Expression |
1 |
|
pwfseqlem4.g |
⊢ ( 𝜑 → 𝐺 : 𝒫 𝐴 –1-1→ ∪ 𝑛 ∈ ω ( 𝐴 ↑m 𝑛 ) ) |
2 |
|
pwfseqlem4.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
3 |
|
pwfseqlem4.h |
⊢ ( 𝜑 → 𝐻 : ω –1-1-onto→ 𝑋 ) |
4 |
|
pwfseqlem4.ps |
⊢ ( 𝜓 ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ) |
5 |
|
pwfseqlem4.k |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 : ∪ 𝑛 ∈ ω ( 𝑥 ↑m 𝑛 ) –1-1→ 𝑥 ) |
6 |
|
pwfseqlem4.d |
⊢ 𝐷 = ( 𝐺 ‘ { 𝑤 ∈ 𝑥 ∣ ( ( ◡ 𝐾 ‘ 𝑤 ) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ ( ◡ 𝐺 ‘ ( ◡ 𝐾 ‘ 𝑤 ) ) ) } ) |
7 |
|
pwfseqlem4.f |
⊢ 𝐹 = ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
8 |
|
isfinite |
⊢ ( 𝑎 ∈ Fin ↔ 𝑎 ≺ ω ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → 𝑎 ∈ Fin ) |
10 |
|
vex |
⊢ 𝑠 ∈ V |
11 |
1 2 3 4 5 6 7
|
pwfseqlem2 |
⊢ ( ( 𝑎 ∈ Fin ∧ 𝑠 ∈ V ) → ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → ( 𝑎 𝐹 𝑠 ) = ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ) |
13 |
|
f1of |
⊢ ( 𝐻 : ω –1-1-onto→ 𝑋 → 𝐻 : ω ⟶ 𝑋 ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝐻 : ω ⟶ 𝑋 ) |
15 |
14 2
|
fssd |
⊢ ( 𝜑 → 𝐻 : ω ⟶ 𝐴 ) |
16 |
|
ficardom |
⊢ ( 𝑎 ∈ Fin → ( card ‘ 𝑎 ) ∈ ω ) |
17 |
|
ffvelrn |
⊢ ( ( 𝐻 : ω ⟶ 𝐴 ∧ ( card ‘ 𝑎 ) ∈ ω ) → ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ∈ 𝐴 ) |
18 |
15 16 17
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → ( 𝐻 ‘ ( card ‘ 𝑎 ) ) ∈ 𝐴 ) |
19 |
12 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ Fin ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
20 |
19
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ Fin → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 ∈ Fin → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
22 |
8 21
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 ≺ ω → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
23 |
|
omelon |
⊢ ω ∈ On |
24 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
25 |
23 24
|
ax-mp |
⊢ ω ∈ dom card |
26 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑠 We 𝑎 ) |
27 |
26
|
19.8ad |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ∃ 𝑠 𝑠 We 𝑎 ) |
28 |
|
ween |
⊢ ( 𝑎 ∈ dom card ↔ ∃ 𝑠 𝑠 We 𝑎 ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → 𝑎 ∈ dom card ) |
30 |
|
domtri2 |
⊢ ( ( ω ∈ dom card ∧ 𝑎 ∈ dom card ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) |
31 |
25 29 30
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) |
33 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑎 |
34 |
|
nfmpo2 |
⊢ Ⅎ 𝑟 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
35 |
7 34
|
nfcxfr |
⊢ Ⅎ 𝑟 𝐹 |
36 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑠 |
37 |
33 35 36
|
nfov |
⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) |
38 |
37
|
nfel1 |
⊢ Ⅎ 𝑟 ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) |
39 |
32 38
|
nfim |
⊢ Ⅎ 𝑟 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
40 |
|
sseq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 ⊆ ( 𝑎 × 𝑎 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) |
41 |
|
weeq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎 ↔ 𝑠 We 𝑎 ) ) |
42 |
40 41
|
3anbi23d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) ) |
43 |
42
|
anbi1d |
⊢ ( 𝑟 = 𝑠 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
44 |
43
|
anbi2d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑟 = 𝑠 → ( 𝑎 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑠 ) ) |
46 |
45
|
eleq1d |
⊢ ( 𝑟 = 𝑠 → ( ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ↔ ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
47 |
44 46
|
imbi12d |
⊢ ( 𝑟 = 𝑠 → ( ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
48 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
50 |
|
nfmpo1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ V , 𝑟 ∈ V ↦ if ( 𝑥 ∈ Fin , ( 𝐻 ‘ ( card ‘ 𝑥 ) ) , ( 𝐷 ‘ ∩ { 𝑧 ∈ ω ∣ ¬ ( 𝐷 ‘ 𝑧 ) ∈ 𝑥 } ) ) ) |
51 |
7 50
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
52 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑟 |
53 |
49 51 52
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) |
54 |
53
|
nfel1 |
⊢ Ⅎ 𝑥 ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) |
55 |
48 54
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
56 |
|
sseq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) |
57 |
|
xpeq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑥 = 𝑎 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
58 |
57
|
anidms |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
59 |
58
|
sseq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ) ) |
60 |
|
weeq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑎 ) ) |
61 |
56 59 60
|
3anbi123d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ) ) |
62 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( ω ≼ 𝑥 ↔ ω ≼ 𝑎 ) ) |
63 |
61 62
|
anbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ∧ ω ≼ 𝑥 ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
64 |
4 63
|
syl5bb |
⊢ ( 𝑥 = 𝑎 → ( 𝜓 ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) |
65 |
64
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) ) ) |
66 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 𝐹 𝑟 ) = ( 𝑎 𝐹 𝑟 ) ) |
67 |
|
difeq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝑎 ) ) |
68 |
66 67
|
eleq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ↔ ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) |
69 |
65 68
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) ) ) |
70 |
1 2 3 4 5 6 7
|
pwfseqlem3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑥 ) ) |
71 |
55 69 70
|
chvarfv |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑟 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑟 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
72 |
39 47 71
|
chvarfv |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ ( 𝐴 ∖ 𝑎 ) ) |
73 |
72
|
eldifad |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ∧ ω ≼ 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |
74 |
73
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ω ≼ 𝑎 → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
75 |
31 74
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( ¬ 𝑎 ≺ ω → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) ) |
76 |
22 75
|
pm2.61d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ∧ 𝑠 We 𝑎 ) ) → ( 𝑎 𝐹 𝑠 ) ∈ 𝐴 ) |