Metamath Proof Explorer


Theorem pwidb

Description: A class is an element of its powerclass if and only if it is a set. (Contributed by BJ, 31-Dec-2023)

Ref Expression
Assertion pwidb ( 𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 pwidg ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 )
2 elex ( 𝐴 ∈ 𝒫 𝐴𝐴 ∈ V )
3 1 2 impbii ( 𝐴 ∈ V ↔ 𝐴 ∈ 𝒫 𝐴 )