Metamath Proof Explorer


Theorem pwjust

Description: Soundness justification theorem for df-pw . (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion pwjust { 𝑥𝑥𝐴 } = { 𝑦𝑦𝐴 }

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
2 1 cbvabv { 𝑥𝑥𝐴 } = { 𝑧𝑧𝐴 }
3 sseq1 ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
4 3 cbvabv { 𝑧𝑧𝐴 } = { 𝑦𝑦𝐴 }
5 2 4 eqtri { 𝑥𝑥𝐴 } = { 𝑦𝑦𝐴 }