Description: Soundness justification theorem for df-pw . (Contributed by Rodolfo Medina, 28-Apr-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pwjust | ⊢ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } = { 𝑦 ∣ 𝑦 ⊆ 𝐴 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴 ) ) | |
2 | 1 | cbvabv | ⊢ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } = { 𝑧 ∣ 𝑧 ⊆ 𝐴 } |
3 | sseq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
4 | 3 | cbvabv | ⊢ { 𝑧 ∣ 𝑧 ⊆ 𝐴 } = { 𝑦 ∣ 𝑦 ⊆ 𝐴 } |
5 | 2 4 | eqtri | ⊢ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } = { 𝑦 ∣ 𝑦 ⊆ 𝐴 } |