Step |
Hyp |
Ref |
Expression |
1 |
|
pwmnd.b |
⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 |
2 |
|
pwmnd.p |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) |
3 |
1
|
eleq2i |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑀 ) ↔ 𝑎 ∈ 𝒫 𝐴 ) |
4 |
1
|
eleq2i |
⊢ ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ 𝑏 ∈ 𝒫 𝐴 ) |
5 |
|
pwuncl |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑎 ∪ 𝑏 ) ∈ 𝒫 𝐴 ) |
6 |
1 2
|
pwmndgplus |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ∪ 𝑏 ) ) |
7 |
1
|
a1i |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( Base ‘ 𝑀 ) = 𝒫 𝐴 ) |
8 |
5 6 7
|
3eltr4d |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ) |
9 |
1
|
eleq2i |
⊢ ( 𝑐 ∈ ( Base ‘ 𝑀 ) ↔ 𝑐 ∈ 𝒫 𝐴 ) |
10 |
|
unass |
⊢ ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) |
11 |
6
|
adantr |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ∪ 𝑏 ) ) |
12 |
11
|
oveq1d |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) ) |
13 |
1 2
|
pwmndgplus |
⊢ ( ( ( 𝑎 ∪ 𝑏 ) ∈ 𝒫 𝐴 ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ∪ 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) ) |
14 |
5 13
|
sylan |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ∪ 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) ) |
15 |
12 14
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( ( 𝑎 ∪ 𝑏 ) ∪ 𝑐 ) ) |
16 |
1 2
|
pwmndgplus |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑏 ∪ 𝑐 ) ) |
17 |
16
|
adantll |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑏 ∪ 𝑐 ) ) |
18 |
17
|
oveq2d |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ∪ 𝑐 ) ) ) |
19 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → 𝑎 ∈ 𝒫 𝐴 ) |
20 |
|
pwuncl |
⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) |
22 |
19 21
|
jca |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) ) |
23 |
1 2
|
pwmndgplus |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ ( 𝑏 ∪ 𝑐 ) ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ∪ 𝑐 ) ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ∪ 𝑐 ) ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) ) |
25 |
18 24
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) = ( 𝑎 ∪ ( 𝑏 ∪ 𝑐 ) ) ) |
26 |
10 15 25
|
3eqtr4a |
⊢ ( ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) ∧ 𝑐 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
27 |
26
|
ex |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑐 ∈ 𝒫 𝐴 → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
28 |
9 27
|
syl5bi |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( 𝑐 ∈ ( Base ‘ 𝑀 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
29 |
28
|
ralrimiv |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
30 |
8 29
|
jca |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ 𝑏 ∈ 𝒫 𝐴 ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
31 |
3 4 30
|
syl2anb |
⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
32 |
31
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) |
33 |
|
0ex |
⊢ ∅ ∈ V |
34 |
|
eleq1 |
⊢ ( 𝑒 = ∅ → ( 𝑒 ∈ ( Base ‘ 𝑀 ) ↔ ∅ ∈ ( Base ‘ 𝑀 ) ) ) |
35 |
|
oveq1 |
⊢ ( 𝑒 = ∅ → ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) ) |
36 |
35
|
eqeq1d |
⊢ ( 𝑒 = ∅ → ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ↔ ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ) ) |
37 |
|
oveq2 |
⊢ ( 𝑒 = ∅ → ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑒 = ∅ → ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ↔ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
39 |
36 38
|
anbi12d |
⊢ ( 𝑒 = ∅ → ( ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ↔ ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) ) |
40 |
39
|
ralbidv |
⊢ ( 𝑒 = ∅ → ( ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ↔ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) ) |
41 |
34 40
|
anbi12d |
⊢ ( 𝑒 = ∅ → ( ( 𝑒 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) ↔ ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) ) ) |
42 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
43 |
42 1
|
eleqtrri |
⊢ ∅ ∈ ( Base ‘ 𝑀 ) |
44 |
1 2
|
pwmndgplus |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = ( ∅ ∪ 𝑎 ) ) |
45 |
|
0un |
⊢ ( ∅ ∪ 𝑎 ) = 𝑎 |
46 |
44 45
|
eqtrdi |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ) |
47 |
1 2
|
pwmndgplus |
⊢ ( ( 𝑎 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑎 ∪ ∅ ) ) |
48 |
47
|
ancoms |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑎 ∪ ∅ ) ) |
49 |
|
un0 |
⊢ ( 𝑎 ∪ ∅ ) = 𝑎 |
50 |
48 49
|
eqtrdi |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) |
51 |
46 50
|
jca |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
52 |
42 51
|
mpan |
⊢ ( 𝑎 ∈ 𝒫 𝐴 → ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
53 |
3 52
|
sylbi |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑀 ) → ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
54 |
53
|
rgen |
⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) |
55 |
43 54
|
pm3.2i |
⊢ ( ∅ ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( ∅ ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) ∅ ) = 𝑎 ) ) |
56 |
33 41 55
|
ceqsexv2d |
⊢ ∃ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) |
57 |
|
df-rex |
⊢ ( ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ↔ ∃ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) ) |
58 |
56 57
|
mpbir |
⊢ ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) |
59 |
32 58
|
pm3.2i |
⊢ ( ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) |
60 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
61 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
62 |
60 61
|
ismnd |
⊢ ( 𝑀 ∈ Mnd ↔ ( ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ( +g ‘ 𝑀 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ∧ ∃ 𝑒 ∈ ( Base ‘ 𝑀 ) ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ( ( 𝑒 ( +g ‘ 𝑀 ) 𝑎 ) = 𝑎 ∧ ( 𝑎 ( +g ‘ 𝑀 ) 𝑒 ) = 𝑎 ) ) ) |
63 |
59 62
|
mpbir |
⊢ 𝑀 ∈ Mnd |