Step |
Hyp |
Ref |
Expression |
1 |
|
pwmnd.b |
⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 |
2 |
|
pwmnd.p |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) |
3 |
2
|
a1i |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) ) |
4 |
|
uneq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝑋 ∪ 𝑌 ) ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑥 ∪ 𝑦 ) = ( 𝑋 ∪ 𝑌 ) ) |
6 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) |
7 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 ) |
8 |
|
unexg |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ∈ V ) |
9 |
3 5 6 7 8
|
ovmpod |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( +g ‘ 𝑀 ) 𝑌 ) = ( 𝑋 ∪ 𝑌 ) ) |