Metamath Proof Explorer


Theorem pwmndgplus

Description: The operation of the monoid of the power set of a class A under union. (Contributed by AV, 27-Feb-2024)

Ref Expression
Hypotheses pwmnd.b ( Base ‘ 𝑀 ) = 𝒫 𝐴
pwmnd.p ( +g𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥𝑦 ) )
Assertion pwmndgplus ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( +g𝑀 ) 𝑌 ) = ( 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 pwmnd.b ( Base ‘ 𝑀 ) = 𝒫 𝐴
2 pwmnd.p ( +g𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥𝑦 ) )
3 2 a1i ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( +g𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥𝑦 ) ) )
4 uneq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥𝑦 ) = ( 𝑋𝑌 ) )
5 4 adantl ( ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥𝑦 ) = ( 𝑋𝑌 ) )
6 simpl ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 )
7 simpr ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 )
8 unexg ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋𝑌 ) ∈ V )
9 3 5 6 7 8 ovmpod ( ( 𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( +g𝑀 ) 𝑌 ) = ( 𝑋𝑌 ) )