Step |
Hyp |
Ref |
Expression |
1 |
|
pwmnd.b |
⊢ ( Base ‘ 𝑀 ) = 𝒫 𝐴 |
2 |
|
pwmnd.p |
⊢ ( +g ‘ 𝑀 ) = ( 𝑥 ∈ 𝒫 𝐴 , 𝑦 ∈ 𝒫 𝐴 ↦ ( 𝑥 ∪ 𝑦 ) ) |
3 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
4 |
1
|
eqcomi |
⊢ 𝒫 𝐴 = ( Base ‘ 𝑀 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
7 |
|
id |
⊢ ( ∅ ∈ 𝒫 𝐴 → ∅ ∈ 𝒫 𝐴 ) |
8 |
1 2
|
pwmndgplus |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑧 ) = ( ∅ ∪ 𝑧 ) ) |
9 |
|
0un |
⊢ ( ∅ ∪ 𝑧 ) = 𝑧 |
10 |
8 9
|
eqtrdi |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( ∅ ( +g ‘ 𝑀 ) 𝑧 ) = 𝑧 ) |
11 |
1 2
|
pwmndgplus |
⊢ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴 ) → ( 𝑧 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑧 ∪ ∅ ) ) |
12 |
11
|
ancoms |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( 𝑧 ( +g ‘ 𝑀 ) ∅ ) = ( 𝑧 ∪ ∅ ) ) |
13 |
|
un0 |
⊢ ( 𝑧 ∪ ∅ ) = 𝑧 |
14 |
12 13
|
eqtrdi |
⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝑧 ∈ 𝒫 𝐴 ) → ( 𝑧 ( +g ‘ 𝑀 ) ∅ ) = 𝑧 ) |
15 |
4 5 6 7 10 14
|
ismgmid2 |
⊢ ( ∅ ∈ 𝒫 𝐴 → ∅ = ( 0g ‘ 𝑀 ) ) |
16 |
15
|
eqcomd |
⊢ ( ∅ ∈ 𝒫 𝐴 → ( 0g ‘ 𝑀 ) = ∅ ) |
17 |
3 16
|
ax-mp |
⊢ ( 0g ‘ 𝑀 ) = ∅ |