Description: The class of all power sets is a proper class. See also snnex . (Contributed by BJ, 2-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | pwnex | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex | ⊢ ( ∀ 𝑦 ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) → ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∈ V ) | |
2 | df-nel | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∈ V ) | |
3 | 1 2 | sylibr | ⊢ ( ∀ 𝑦 ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V ) |
4 | vpwex | ⊢ 𝒫 𝑦 ∈ V | |
5 | vex | ⊢ 𝑦 ∈ V | |
6 | 5 | pwid | ⊢ 𝑦 ∈ 𝒫 𝑦 |
7 | 4 6 | pm3.2i | ⊢ ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) |
8 | 3 7 | mpg | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V |