Description: The class of all power sets is a proper class. See also snnex . (Contributed by BJ, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwnex | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex | ⊢ ( ∀ 𝑦 ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) → ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∈ V ) | |
| 2 | df-nel | ⊢ ( { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∈ V ) | |
| 3 | 1 2 | sylibr | ⊢ ( ∀ 𝑦 ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V ) |
| 4 | vpwex | ⊢ 𝒫 𝑦 ∈ V | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 5 | pwid | ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 7 | 4 6 | pm3.2i | ⊢ ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) |
| 8 | 3 7 | mpg | ⊢ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V |