Metamath Proof Explorer


Theorem pwnex

Description: The class of all power sets is a proper class. See also snnex . (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion pwnex { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V

Proof

Step Hyp Ref Expression
1 abnex ( ∀ 𝑦 ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) → ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∈ V )
2 df-nel ( { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∈ V )
3 1 2 sylibr ( ∀ 𝑦 ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V )
4 vpwex 𝒫 𝑦 ∈ V
5 vex 𝑦 ∈ V
6 5 pwid 𝑦 ∈ 𝒫 𝑦
7 4 6 pm3.2i ( 𝒫 𝑦 ∈ V ∧ 𝑦 ∈ 𝒫 𝑦 )
8 3 7 mpg { 𝑥 ∣ ∃ 𝑦 𝑥 = 𝒫 𝑦 } ∉ V