Metamath Proof Explorer


Theorem pwnss

Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015) (Proof shortened by BJ, 24-Jul-2025)

Ref Expression
Assertion pwnss ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 rru ¬ { 𝑥𝐴 ∣ ¬ 𝑥𝑥 } ∈ 𝐴
2 ssel ( 𝒫 𝐴𝐴 → ( { 𝑥𝐴 ∣ ¬ 𝑥𝑥 } ∈ 𝒫 𝐴 → { 𝑥𝐴 ∣ ¬ 𝑥𝑥 } ∈ 𝐴 ) )
3 1 2 mtoi ( 𝒫 𝐴𝐴 → ¬ { 𝑥𝐴 ∣ ¬ 𝑥𝑥 } ∈ 𝒫 𝐴 )
4 rabelpw ( 𝐴𝑉 → { 𝑥𝐴 ∣ ¬ 𝑥𝑥 } ∈ 𝒫 𝐴 )
5 3 4 nsyl3 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴 )