Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015) (Proof shortened by BJ, 24-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwnss | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rru | ⊢ ¬ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥 } ∈ 𝐴 | |
| 2 | ssel | ⊢ ( 𝒫 𝐴 ⊆ 𝐴 → ( { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥 } ∈ 𝒫 𝐴 → { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥 } ∈ 𝐴 ) ) | |
| 3 | 1 2 | mtoi | ⊢ ( 𝒫 𝐴 ⊆ 𝐴 → ¬ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥 } ∈ 𝒫 𝐴 ) |
| 4 | rabelpw | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥 } ∈ 𝒫 𝐴 ) | |
| 5 | 3 4 | nsyl3 | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴 ) |