Step |
Hyp |
Ref |
Expression |
1 |
|
pwsmnd.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pws0g.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) |
4 |
|
simpr |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) |
5 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
6 |
|
fconst6g |
⊢ ( 𝑅 ∈ Mnd → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Mnd ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Mnd ) |
8 |
3 4 5 7
|
prds0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 0g ∘ ( 𝐼 × { 𝑅 } ) ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
9 |
|
fconstmpt |
⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) |
10 |
|
elex |
⊢ ( 𝑅 ∈ Mnd → 𝑅 ∈ V ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ V ) |
12 |
|
fconstmpt |
⊢ ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
13 |
12
|
a1i |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
14 |
|
fn0g |
⊢ 0g Fn V |
15 |
14
|
a1i |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 0g Fn V ) |
16 |
|
dffn5 |
⊢ ( 0g Fn V ↔ 0g = ( 𝑟 ∈ V ↦ ( 0g ‘ 𝑟 ) ) ) |
17 |
15 16
|
sylib |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 0g = ( 𝑟 ∈ V ↦ ( 0g ‘ 𝑟 ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
20 |
11 13 17 19
|
fmptco |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 0g ∘ ( 𝐼 × { 𝑅 } ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
21 |
9 20
|
eqtr4id |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ∘ ( 𝐼 × { 𝑅 } ) ) ) |
22 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
23 |
1 22
|
pwsval |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 0g ‘ 𝑌 ) = ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
25 |
8 21 24
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 0 } ) = ( 0g ‘ 𝑌 ) ) |