| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pws1.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pws1.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 4 | 1 3 | pwsval | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 1r ‘ 𝑌 )  =  ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 6 |  | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  𝐼  ∈  𝑉 ) | 
						
							| 8 |  | fvexd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( Scalar ‘ 𝑅 )  ∈  V ) | 
						
							| 9 |  | fconst6g | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ Ring ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ Ring ) | 
						
							| 11 | 6 7 8 10 | prds1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 1r  ∘  ( 𝐼  ×  { 𝑅 } ) )  =  ( 1r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 12 |  | fn0g | ⊢ 0g  Fn  V | 
						
							| 13 |  | fnmgp | ⊢ mulGrp  Fn  V | 
						
							| 14 |  | ssv | ⊢ ran  mulGrp  ⊆  V | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ran  mulGrp  ⊆  V ) | 
						
							| 16 |  | fnco | ⊢ ( ( 0g  Fn  V  ∧  mulGrp  Fn  V  ∧  ran  mulGrp  ⊆  V )  →  ( 0g  ∘  mulGrp )  Fn  V ) | 
						
							| 17 | 12 13 15 16 | mp3an12i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 0g  ∘  mulGrp )  Fn  V ) | 
						
							| 18 |  | df-ur | ⊢ 1r  =  ( 0g  ∘  mulGrp ) | 
						
							| 19 | 18 | fneq1i | ⊢ ( 1r  Fn  V  ↔  ( 0g  ∘  mulGrp )  Fn  V ) | 
						
							| 20 | 17 19 | sylibr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  1r  Fn  V ) | 
						
							| 21 |  | elex | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  V ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 23 |  | fcoconst | ⊢ ( ( 1r  Fn  V  ∧  𝑅  ∈  V )  →  ( 1r  ∘  ( 𝐼  ×  { 𝑅 } ) )  =  ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } ) ) | 
						
							| 24 | 20 22 23 | syl2anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 1r  ∘  ( 𝐼  ×  { 𝑅 } ) )  =  ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } ) ) | 
						
							| 25 | 2 | sneqi | ⊢ {  1  }  =  { ( 1r ‘ 𝑅 ) } | 
						
							| 26 | 25 | xpeq2i | ⊢ ( 𝐼  ×  {  1  } )  =  ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } ) | 
						
							| 27 | 24 26 | eqtr4di | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 1r  ∘  ( 𝐼  ×  { 𝑅 } ) )  =  ( 𝐼  ×  {  1  } ) ) | 
						
							| 28 | 5 11 27 | 3eqtr2rd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 𝐼  ×  {  1  } )  =  ( 1r ‘ 𝑌 ) ) |