| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwscmn.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
| 3 |
1 2
|
pwsval |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 4 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑉 ) |
| 6 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
| 7 |
|
fconst6g |
⊢ ( 𝑅 ∈ Abel → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Abel ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ Abel ) |
| 9 |
4 5 6 8
|
prdsabld |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ∈ Abel ) |
| 10 |
3 9
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Abel ) |