| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsbas.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsbas.f |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
| 4 |
1 3
|
pwsval |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 5 |
4
|
fveq2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 6 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) |
| 7 |
|
fvexd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
| 8 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐼 ∈ 𝑊 ) |
| 9 |
|
snex |
⊢ { 𝑅 } ∈ V |
| 10 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ { 𝑅 } ∈ V ) → ( 𝐼 × { 𝑅 } ) ∈ V ) |
| 11 |
8 9 10
|
sylancl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐼 × { 𝑅 } ) ∈ V ) |
| 12 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 13 |
|
snnzg |
⊢ ( 𝑅 ∈ 𝑉 → { 𝑅 } ≠ ∅ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → { 𝑅 } ≠ ∅ ) |
| 15 |
|
dmxp |
⊢ ( { 𝑅 } ≠ ∅ → dom ( 𝐼 × { 𝑅 } ) = 𝐼 ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → dom ( 𝐼 × { 𝑅 } ) = 𝐼 ) |
| 17 |
6 7 11 12 16
|
prdsbas |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ) |
| 18 |
|
fvconst2g |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 19 |
18
|
fveq2d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( 𝑅 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) ) |
| 22 |
|
ixpeq2 |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( Base ‘ 𝑅 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 24 |
17 23
|
eqtrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) ) |
| 25 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
| 26 |
|
ixpconstg |
⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( Base ‘ 𝑅 ) ∈ V ) → X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 27 |
8 25 26
|
sylancl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) ) |
| 28 |
2
|
oveq1i |
⊢ ( 𝐵 ↑m 𝐼 ) = ( ( Base ‘ 𝑅 ) ↑m 𝐼 ) |
| 29 |
27 28
|
eqtr4di |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → X 𝑥 ∈ 𝐼 ( Base ‘ 𝑅 ) = ( 𝐵 ↑m 𝐼 ) ) |
| 30 |
5 24 29
|
3eqtrrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐵 ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |