Step |
Hyp |
Ref |
Expression |
1 |
|
pwsco1mhm.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) |
2 |
|
pwsco1mhm.z |
⊢ 𝑍 = ( 𝑅 ↑s 𝐵 ) |
3 |
|
pwsco1mhm.c |
⊢ 𝐶 = ( Base ‘ 𝑍 ) |
4 |
|
pwsco1mhm.r |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
5 |
|
pwsco1mhm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
pwsco1mhm.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
7 |
|
pwsco1mhm.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
2
|
pwsmnd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → 𝑍 ∈ Mnd ) |
9 |
4 6 8
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ Mnd ) |
10 |
1
|
pwsmnd |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Mnd ) |
11 |
4 5 10
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
13 |
2 12 3
|
pwselbasb |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( 𝑔 ∈ 𝐶 ↔ 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) |
14 |
4 6 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↔ 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) |
15 |
14
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
17 |
|
fco |
⊢ ( ( 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
20 |
1 12 19
|
pwselbasb |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
21 |
4 5 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑔 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
23 |
18 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐶 ) → ( 𝑔 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ) |
24 |
23
|
fmpttd |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐴 ∈ 𝑉 ) |
26 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
27 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V ) |
28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
29 |
28
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
30 |
28
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
31 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑅 ∈ Mnd ) |
32 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐵 ∈ 𝑊 ) |
33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐶 ) |
34 |
2 12 3 31 32 33
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
35 |
34
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑥 = ( 𝑤 ∈ 𝐵 ↦ ( 𝑥 ‘ 𝑤 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ‘ 𝑤 ) = ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
37 |
29 30 35 36
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 ∈ 𝐶 ) |
39 |
2 12 3 31 32 38
|
pwselbas |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
40 |
39
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝑦 = ( 𝑤 ∈ 𝐵 ↦ ( 𝑦 ‘ 𝑤 ) ) ) |
41 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( 𝑦 ‘ 𝑤 ) = ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
42 |
29 30 40 41
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
43 |
25 26 27 37 42
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∘ 𝐹 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘ 𝐹 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
44 |
|
fco |
⊢ ( ( 𝑥 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
45 |
34 28 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
46 |
1 12 19
|
pwselbasb |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑥 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
47 |
31 25 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑥 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
48 |
45 47
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ) |
49 |
|
fco |
⊢ ( ( 𝑦 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
50 |
39 28 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
51 |
1 12 19
|
pwselbasb |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑦 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
52 |
31 25 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑦 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ↔ ( 𝑦 ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) |
53 |
50 52
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) ∈ ( Base ‘ 𝑌 ) ) |
54 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
55 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
56 |
1 19 31 25 48 53 54 55
|
pwsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ∘ 𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦 ∘ 𝐹 ) ) = ( ( 𝑥 ∘ 𝐹 ) ∘f ( +g ‘ 𝑅 ) ( 𝑦 ∘ 𝐹 ) ) ) |
57 |
|
eqid |
⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) |
58 |
2 3 31 32 33 38 54 57
|
pwsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
59 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑥 ‘ 𝑤 ) ∈ V ) |
60 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) ∧ 𝑤 ∈ 𝐵 ) → ( 𝑦 ‘ 𝑤 ) ∈ V ) |
61 |
32 59 60 35 40
|
offval2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑤 ∈ 𝐵 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
62 |
58 61
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) = ( 𝑤 ∈ 𝐵 ↦ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) |
63 |
36 41
|
oveq12d |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) = ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
64 |
29 30 62 63
|
fmptco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
65 |
43 56 64
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) = ( ( 𝑥 ∘ 𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦 ∘ 𝐹 ) ) ) |
66 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) = ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) |
67 |
|
coeq1 |
⊢ ( 𝑔 = ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) → ( 𝑔 ∘ 𝐹 ) = ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ) |
68 |
3 57
|
mndcl |
⊢ ( ( 𝑍 ∈ Mnd ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ 𝐶 ) |
69 |
68
|
3expb |
⊢ ( ( 𝑍 ∈ Mnd ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ 𝐶 ) |
70 |
9 69
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ 𝐶 ) |
71 |
|
ovex |
⊢ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ V |
72 |
7 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → 𝐹 ∈ V ) |
74 |
|
coexg |
⊢ ( ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∈ V ∧ 𝐹 ∈ V ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ∈ V ) |
75 |
71 73 74
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ∈ V ) |
76 |
66 67 70 75
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ∘ 𝐹 ) ) |
77 |
|
coeq1 |
⊢ ( 𝑔 = 𝑥 → ( 𝑔 ∘ 𝐹 ) = ( 𝑥 ∘ 𝐹 ) ) |
78 |
|
coexg |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝐹 ∈ V ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) |
79 |
33 73 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 ∘ 𝐹 ) ∈ V ) |
80 |
66 77 33 79
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) = ( 𝑥 ∘ 𝐹 ) ) |
81 |
|
coeq1 |
⊢ ( 𝑔 = 𝑦 → ( 𝑔 ∘ 𝐹 ) = ( 𝑦 ∘ 𝐹 ) ) |
82 |
|
coexg |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝐹 ∈ V ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) |
83 |
38 73 82
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑦 ∘ 𝐹 ) ∈ V ) |
84 |
66 81 38 83
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) = ( 𝑦 ∘ 𝐹 ) ) |
85 |
80 84
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 ∘ 𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦 ∘ 𝐹 ) ) ) |
86 |
65 76 85
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ) |
87 |
86
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ) |
88 |
|
coeq1 |
⊢ ( 𝑔 = ( 0g ‘ 𝑍 ) → ( 𝑔 ∘ 𝐹 ) = ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ) |
89 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
90 |
3 89
|
mndidcl |
⊢ ( 𝑍 ∈ Mnd → ( 0g ‘ 𝑍 ) ∈ 𝐶 ) |
91 |
9 90
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑍 ) ∈ 𝐶 ) |
92 |
|
coexg |
⊢ ( ( ( 0g ‘ 𝑍 ) ∈ 𝐶 ∧ 𝐹 ∈ V ) → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ∈ V ) |
93 |
91 72 92
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ∈ V ) |
94 |
66 88 91 93
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ) |
95 |
2 12 3 4 6 91
|
pwselbas |
⊢ ( 𝜑 → ( 0g ‘ 𝑍 ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
96 |
|
fco |
⊢ ( ( ( 0g ‘ 𝑍 ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
97 |
95 7 96
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
98 |
97
|
ffnd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) Fn 𝐴 ) |
99 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ V ) |
100 |
|
fnconstg |
⊢ ( ( 0g ‘ 𝑅 ) ∈ V → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) Fn 𝐴 ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) Fn 𝐴 ) |
102 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
103 |
2 102
|
pws0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑍 ) ) |
104 |
4 6 103
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑍 ) ) |
105 |
104
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
107 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
108 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
109 |
|
fvconst2g |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
110 |
107 108 109
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 × { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
111 |
106 110
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ 𝑅 ) ) |
112 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
113 |
7 112
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
114 |
|
fvconst2g |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
115 |
99 114
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
116 |
111 113 115
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) ) |
117 |
98 101 116
|
eqfnfvd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑍 ) ∘ 𝐹 ) = ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) ) |
118 |
1 102
|
pws0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
119 |
4 5 118
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑅 ) } ) = ( 0g ‘ 𝑌 ) ) |
120 |
94 117 119
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑌 ) ) |
121 |
24 87 120
|
3jca |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑌 ) ) ) |
122 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
123 |
3 19 57 55 89 122
|
ismhm |
⊢ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ↔ ( ( 𝑍 ∈ Mnd ∧ 𝑌 ∈ Mnd ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐶 ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) ) = ( ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ 𝑦 ) ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) ) = ( 0g ‘ 𝑌 ) ) ) ) |
124 |
9 11 121 123
|
syl21anbrc |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ) |