| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsco1rhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐴 ) | 
						
							| 2 |  | pwsco1rhm.z | ⊢ 𝑍  =  ( 𝑅  ↑s  𝐵 ) | 
						
							| 3 |  | pwsco1rhm.c | ⊢ 𝐶  =  ( Base ‘ 𝑍 ) | 
						
							| 4 |  | pwsco1rhm.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | pwsco1rhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | pwsco1rhm.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 7 |  | pwsco1rhm.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 | 2 | pwsring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐵  ∈  𝑊 )  →  𝑍  ∈  Ring ) | 
						
							| 9 | 4 6 8 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  Ring ) | 
						
							| 10 | 1 | pwsring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  𝑌  ∈  Ring ) | 
						
							| 11 | 4 5 10 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  Ring ) | 
						
							| 12 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 14 | 1 2 3 13 5 6 7 | pwsco1mhm | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  MndHom  𝑌 ) ) | 
						
							| 15 |  | ringgrp | ⊢ ( 𝑍  ∈  Ring  →  𝑍  ∈  Grp ) | 
						
							| 16 | 9 15 | syl | ⊢ ( 𝜑  →  𝑍  ∈  Grp ) | 
						
							| 17 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 18 | 11 17 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 19 |  | ghmmhmb | ⊢ ( ( 𝑍  ∈  Grp  ∧  𝑌  ∈  Grp )  →  ( 𝑍  GrpHom  𝑌 )  =  ( 𝑍  MndHom  𝑌 ) ) | 
						
							| 20 | 16 18 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑍  GrpHom  𝑌 )  =  ( 𝑍  MndHom  𝑌 ) ) | 
						
							| 21 | 14 20 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  GrpHom  𝑌 ) ) | 
						
							| 22 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 )  =  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) | 
						
							| 23 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 )  =  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) | 
						
							| 25 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 26 | 25 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 27 | 4 26 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 28 | 22 23 24 27 5 6 7 | pwsco1mhm | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) )  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 )  MndHom  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 30 | 2 29 | pwsbas | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐵  ∈  𝑊 )  →  ( ( Base ‘ 𝑅 )  ↑m  𝐵 )  =  ( Base ‘ 𝑍 ) ) | 
						
							| 31 | 13 6 30 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  𝐵 )  =  ( Base ‘ 𝑍 ) ) | 
						
							| 32 | 31 3 | eqtr4di | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  𝐵 )  =  𝐶 ) | 
						
							| 33 | 25 29 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 34 | 23 33 | pwsbas | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  𝐵  ∈  𝑊 )  →  ( ( Base ‘ 𝑅 )  ↑m  𝐵 )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) | 
						
							| 35 | 27 6 34 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  𝐵 )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) | 
						
							| 36 | 32 35 | eqtr3d | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) | 
						
							| 37 | 36 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  =  ( 𝑔  ∈  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) )  ↦  ( 𝑔  ∘  𝐹 ) ) ) | 
						
							| 38 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) | 
						
							| 39 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( mulGrp ‘ 𝑍 )  =  ( mulGrp ‘ 𝑍 ) | 
						
							| 41 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) | 
						
							| 42 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑍 ) ) | 
						
							| 43 |  | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) | 
						
							| 44 | 2 25 23 40 41 24 42 43 | pwsmgp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐵  ∈  𝑊 )  →  ( ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) ) | 
						
							| 45 | 4 6 44 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) ) | 
						
							| 46 | 45 | simpld | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 48 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 49 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) | 
						
							| 50 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 51 |  | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) | 
						
							| 52 | 1 25 22 47 48 49 50 51 | pwsmgp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) ) | 
						
							| 53 | 4 5 52 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) ) | 
						
							| 54 | 53 | simpld | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 55 | 45 | simprd | ⊢ ( 𝜑  →  ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) ) | 
						
							| 56 | 55 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( mulGrp ‘ 𝑍 ) )  ∧  𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 ) ) 𝑦 ) ) | 
						
							| 57 | 53 | simprd | ⊢ ( 𝜑  →  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 58 | 57 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  ∧  𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) 𝑦 ) ) | 
						
							| 59 | 38 39 46 54 56 58 | mhmpropd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ 𝑌 ) )  =  ( ( ( mulGrp ‘ 𝑅 )  ↑s  𝐵 )  MndHom  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 60 | 28 37 59 | 3eltr4d | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 61 | 21 60 | jca | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  GrpHom  𝑌 )  ∧  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) ) | 
						
							| 62 | 40 47 | isrhm | ⊢ ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  RingHom  𝑌 )  ↔  ( ( 𝑍  ∈  Ring  ∧  𝑌  ∈  Ring )  ∧  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  GrpHom  𝑌 )  ∧  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( ( mulGrp ‘ 𝑍 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) ) ) | 
						
							| 63 | 9 11 61 62 | syl21anbrc | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  RingHom  𝑌 ) ) |