| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsco2mhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐴 ) | 
						
							| 2 |  | pwsco2mhm.z | ⊢ 𝑍  =  ( 𝑆  ↑s  𝐴 ) | 
						
							| 3 |  | pwsco2mhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 4 |  | pwsco2mhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | pwsco2mhm.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 6 |  | mhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝑅  ∈  Mnd ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 8 | 1 | pwsmnd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  𝑌  ∈  Mnd ) | 
						
							| 9 | 7 4 8 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  Mnd ) | 
						
							| 10 |  | mhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝑆  ∈  Mnd ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Mnd ) | 
						
							| 12 | 2 | pwsmnd | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  𝑍  ∈  Mnd ) | 
						
							| 13 | 11 4 12 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  Mnd ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 16 | 14 15 | mhmf | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 18 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑅  ∈  Mnd ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝐴  ∈  𝑉 ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔  ∈  𝐵 ) | 
						
							| 21 | 1 14 3 18 19 20 | pwselbas | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 22 |  | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  𝑔 : 𝐴 ⟶ ( Base ‘ 𝑅 ) )  →  ( 𝐹  ∘  𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 23 | 17 21 22 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝐹  ∘  𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 25 | 2 15 24 | pwselbasb | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐹  ∘  𝑔 )  ∈  ( Base ‘ 𝑍 )  ↔  ( 𝐹  ∘  𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 26 | 11 19 25 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( ( 𝐹  ∘  𝑔 )  ∈  ( Base ‘ 𝑍 )  ↔  ( 𝐹  ∘  𝑔 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 27 | 23 26 | mpbird | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝐹  ∘  𝑔 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 28 | 27 | fmpttd | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 ) ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐹  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  𝐹  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 31 | 29 6 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 32 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 33 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 34 | 1 14 3 31 32 33 | pwselbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 34 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑥 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 36 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 37 | 1 14 3 31 32 36 | pwselbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦 : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 38 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 39 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 40 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 41 | 14 39 40 | mhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ( 𝑥 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 42 | 30 35 38 41 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) )  =  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 43 | 42 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑤  ∈  𝐴  ↦  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) )  =  ( 𝑤  ∈  𝐴  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 44 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) )  ∈  V ) | 
						
							| 45 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) )  ∈  V ) | 
						
							| 46 | 34 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  =  ( 𝑤  ∈  𝐴  ↦  ( 𝑥 ‘ 𝑤 ) ) ) | 
						
							| 47 | 29 16 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 48 | 47 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐹  =  ( 𝑧  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑥 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ) | 
						
							| 50 | 35 46 48 49 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  𝑥 )  =  ( 𝑤  ∈  𝐴  ↦  ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ) ) | 
						
							| 51 | 37 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  =  ( 𝑤  ∈  𝐴  ↦  ( 𝑦 ‘ 𝑤 ) ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑦 ‘ 𝑤 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) | 
						
							| 53 | 38 51 48 52 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  𝑦 )  =  ( 𝑤  ∈  𝐴  ↦  ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 54 | 32 44 45 50 53 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹  ∘  𝑥 )  ∘f  ( +g ‘ 𝑆 ) ( 𝐹  ∘  𝑦 ) )  =  ( 𝑤  ∈  𝐴  ↦  ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑤 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 55 | 43 54 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑤  ∈  𝐴  ↦  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) )  =  ( ( 𝐹  ∘  𝑥 )  ∘f  ( +g ‘ 𝑆 ) ( 𝐹  ∘  𝑦 ) ) ) | 
						
							| 56 | 31 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  𝑅  ∈  Mnd ) | 
						
							| 57 | 14 39 | mndcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑥 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑦 ‘ 𝑤 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 58 | 56 35 38 57 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 59 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 60 | 1 3 31 32 33 36 39 59 | pwsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 61 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑥 ‘ 𝑤 )  ∈  V ) | 
						
							| 62 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑤  ∈  𝐴 )  →  ( 𝑦 ‘ 𝑤 )  ∈  V ) | 
						
							| 63 | 32 61 62 46 51 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 )  =  ( 𝑤  ∈  𝐴  ↦  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 64 | 60 63 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  =  ( 𝑤  ∈  𝐴  ↦  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑧  =  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 66 | 58 64 48 65 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( 𝑤  ∈  𝐴  ↦  ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) ) | 
						
							| 67 | 29 10 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  ∈  Mnd ) | 
						
							| 68 |  | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  𝑥 : 𝐴 ⟶ ( Base ‘ 𝑅 ) )  →  ( 𝐹  ∘  𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 69 | 47 34 68 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 70 | 2 15 24 | pwselbasb | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐹  ∘  𝑥 )  ∈  ( Base ‘ 𝑍 )  ↔  ( 𝐹  ∘  𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 71 | 67 32 70 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹  ∘  𝑥 )  ∈  ( Base ‘ 𝑍 )  ↔  ( 𝐹  ∘  𝑥 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 72 | 69 71 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  𝑥 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 73 |  | fco | ⊢ ( ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  ∧  𝑦 : 𝐴 ⟶ ( Base ‘ 𝑅 ) )  →  ( 𝐹  ∘  𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 74 | 47 37 73 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 75 | 2 15 24 | pwselbasb | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝐹  ∘  𝑦 )  ∈  ( Base ‘ 𝑍 )  ↔  ( 𝐹  ∘  𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 76 | 67 32 75 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹  ∘  𝑦 )  ∈  ( Base ‘ 𝑍 )  ↔  ( 𝐹  ∘  𝑦 ) : 𝐴 ⟶ ( Base ‘ 𝑆 ) ) ) | 
						
							| 77 | 74 76 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  𝑦 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 78 |  | eqid | ⊢ ( +g ‘ 𝑍 )  =  ( +g ‘ 𝑍 ) | 
						
							| 79 | 2 24 67 32 72 77 40 78 | pwsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹  ∘  𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹  ∘  𝑦 ) )  =  ( ( 𝐹  ∘  𝑥 )  ∘f  ( +g ‘ 𝑆 ) ( 𝐹  ∘  𝑦 ) ) ) | 
						
							| 80 | 55 66 79 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( ( 𝐹  ∘  𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹  ∘  𝑦 ) ) ) | 
						
							| 81 |  | eqid | ⊢ ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  =  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 82 |  | coeq2 | ⊢ ( 𝑔  =  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ) | 
						
							| 83 | 3 59 | mndcl | ⊢ ( ( 𝑌  ∈  Mnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 84 | 83 | 3expb | ⊢ ( ( 𝑌  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 85 | 9 84 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 86 |  | coexg | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 )  ∈  𝐵 )  →  ( 𝐹  ∘  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  ∈  V ) | 
						
							| 87 | 5 85 86 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹  ∘  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  ∈  V ) | 
						
							| 88 | 81 82 85 87 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( 𝐹  ∘  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) ) | 
						
							| 89 |  | coeq2 | ⊢ ( 𝑔  =  𝑥  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  𝑥 ) ) | 
						
							| 90 | 81 89 33 72 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑥 )  =  ( 𝐹  ∘  𝑥 ) ) | 
						
							| 91 |  | coeq2 | ⊢ ( 𝑔  =  𝑦  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  𝑦 ) ) | 
						
							| 92 | 81 91 36 77 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑦 )  =  ( 𝐹  ∘  𝑦 ) ) | 
						
							| 93 | 90 92 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑦 ) )  =  ( ( 𝐹  ∘  𝑥 ) ( +g ‘ 𝑍 ) ( 𝐹  ∘  𝑦 ) ) ) | 
						
							| 94 | 80 88 93 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑦 ) ) ) | 
						
							| 95 | 94 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑦 ) ) ) | 
						
							| 96 |  | coeq2 | ⊢ ( 𝑔  =  ( 0g ‘ 𝑌 )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 97 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 98 | 3 97 | mndidcl | ⊢ ( 𝑌  ∈  Mnd  →  ( 0g ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 99 | 9 98 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 100 |  | coexg | ⊢ ( ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  ∧  ( 0g ‘ 𝑌 )  ∈  𝐵 )  →  ( 𝐹  ∘  ( 0g ‘ 𝑌 ) )  ∈  V ) | 
						
							| 101 | 5 99 100 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 0g ‘ 𝑌 ) )  ∈  V ) | 
						
							| 102 | 81 96 99 101 | fvmptd3 | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 𝐹  ∘  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 103 | 17 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 104 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 105 | 14 104 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 106 | 7 105 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 107 |  | fcoconst | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑅 )  ∧  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹  ∘  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) )  =  ( 𝐴  ×  { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) ) | 
						
							| 108 | 103 106 107 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) )  =  ( 𝐴  ×  { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } ) ) | 
						
							| 109 | 1 104 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 110 | 7 4 109 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 111 | 110 | coeq2d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) )  =  ( 𝐹  ∘  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 112 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 113 | 104 112 | mhm0 | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑆 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 114 | 5 113 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 115 | 114 | sneqd | ⊢ ( 𝜑  →  { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) }  =  { ( 0g ‘ 𝑆 ) } ) | 
						
							| 116 | 115 | xpeq2d | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( 𝐹 ‘ ( 0g ‘ 𝑅 ) ) } )  =  ( 𝐴  ×  { ( 0g ‘ 𝑆 ) } ) ) | 
						
							| 117 | 108 111 116 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 0g ‘ 𝑌 ) )  =  ( 𝐴  ×  { ( 0g ‘ 𝑆 ) } ) ) | 
						
							| 118 | 2 112 | pws0g | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ×  { ( 0g ‘ 𝑆 ) } )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 119 | 11 4 118 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( 0g ‘ 𝑆 ) } )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 120 | 102 117 119 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 121 | 28 95 120 | 3jca | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑦 ) )  ∧  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝑍 ) ) ) | 
						
							| 122 |  | eqid | ⊢ ( 0g ‘ 𝑍 )  =  ( 0g ‘ 𝑍 ) | 
						
							| 123 | 3 24 59 78 97 122 | ismhm | ⊢ ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  MndHom  𝑍 )  ↔  ( ( 𝑌  ∈  Mnd  ∧  𝑍  ∈  Mnd )  ∧  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) : 𝐵 ⟶ ( Base ‘ 𝑍 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑥 ) ( +g ‘ 𝑍 ) ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ 𝑦 ) )  ∧  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) ) ‘ ( 0g ‘ 𝑌 ) )  =  ( 0g ‘ 𝑍 ) ) ) ) | 
						
							| 124 | 9 13 121 123 | syl21anbrc | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  MndHom  𝑍 ) ) |