| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsco2rhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐴 ) | 
						
							| 2 |  | pwsco2rhm.z | ⊢ 𝑍  =  ( 𝑆  ↑s  𝐴 ) | 
						
							| 3 |  | pwsco2rhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 4 |  | pwsco2rhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | pwsco2rhm.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 6 |  | rhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 8 | 1 | pwsring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  𝑌  ∈  Ring ) | 
						
							| 9 | 7 4 8 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  Ring ) | 
						
							| 10 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 12 | 2 | pwsring | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  𝑍  ∈  Ring ) | 
						
							| 13 | 11 4 12 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  Ring ) | 
						
							| 14 |  | rhmghm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 15 | 5 14 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 16 |  | ghmmhm | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝐹  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 18 | 1 2 3 4 17 | pwsco2mhm | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  MndHom  𝑍 ) ) | 
						
							| 19 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 20 | 9 19 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 21 |  | ringgrp | ⊢ ( 𝑍  ∈  Ring  →  𝑍  ∈  Grp ) | 
						
							| 22 | 13 21 | syl | ⊢ ( 𝜑  →  𝑍  ∈  Grp ) | 
						
							| 23 |  | ghmmhmb | ⊢ ( ( 𝑌  ∈  Grp  ∧  𝑍  ∈  Grp )  →  ( 𝑌  GrpHom  𝑍 )  =  ( 𝑌  MndHom  𝑍 ) ) | 
						
							| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑌  GrpHom  𝑍 )  =  ( 𝑌  MndHom  𝑍 ) ) | 
						
							| 25 | 18 24 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  GrpHom  𝑍 ) ) | 
						
							| 26 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 )  =  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) | 
						
							| 27 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 )  =  ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) | 
						
							| 29 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 30 |  | eqid | ⊢ ( mulGrp ‘ 𝑆 )  =  ( mulGrp ‘ 𝑆 ) | 
						
							| 31 | 29 30 | rhmmhm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 32 | 5 31 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑆 ) ) ) | 
						
							| 33 | 26 27 28 4 32 | pwsco2mhm | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 )  MndHom  ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 35 | 1 34 | pwsbas | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  ( ( Base ‘ 𝑅 )  ↑m  𝐴 )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 36 | 7 4 35 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  𝐴 )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 37 | 36 3 | eqtr4di | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  𝐴 )  =  𝐵 ) | 
						
							| 38 | 29 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 39 | 7 38 | syl | ⊢ ( 𝜑  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 40 | 29 34 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 41 | 26 40 | pwsbas | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( Base ‘ 𝑅 )  ↑m  𝐴 )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 42 | 39 4 41 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  𝐴 )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 43 | 37 42 | eqtr3d | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 44 | 43 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  =  ( 𝑔  ∈  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  ↦  ( 𝐹  ∘  𝑔 ) ) ) | 
						
							| 45 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 46 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 48 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 49 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 50 |  | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) | 
						
							| 51 | 1 29 26 47 48 28 49 50 | pwsmgp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) ) | 
						
							| 52 | 7 4 51 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) ) | 
						
							| 53 | 52 | simpld | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 54 |  | eqid | ⊢ ( mulGrp ‘ 𝑍 )  =  ( mulGrp ‘ 𝑍 ) | 
						
							| 55 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) | 
						
							| 57 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑍 ) ) | 
						
							| 58 |  | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) | 
						
							| 59 | 2 30 27 54 55 56 57 58 | pwsmgp | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝐴  ∈  𝑉 )  →  ( ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) ) ) | 
						
							| 60 | 11 4 59 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) ) ) | 
						
							| 61 | 60 | simpld | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑍 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) ) | 
						
							| 62 | 52 | simprd | ⊢ ( 𝜑  →  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) ) | 
						
							| 63 | 62 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  ∧  𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 ) ) 𝑦 ) ) | 
						
							| 64 | 60 | simprd | ⊢ ( 𝜑  →  ( +g ‘ ( mulGrp ‘ 𝑍 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) ) | 
						
							| 65 | 64 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( mulGrp ‘ 𝑍 ) )  ∧  𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) 𝑦 ) ) | 
						
							| 66 | 45 46 53 61 63 65 | mhmpropd | ⊢ ( 𝜑  →  ( ( mulGrp ‘ 𝑌 )  MndHom  ( mulGrp ‘ 𝑍 ) )  =  ( ( ( mulGrp ‘ 𝑅 )  ↑s  𝐴 )  MndHom  ( ( mulGrp ‘ 𝑆 )  ↑s  𝐴 ) ) ) | 
						
							| 67 | 33 44 66 | 3eltr4d | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( ( mulGrp ‘ 𝑌 )  MndHom  ( mulGrp ‘ 𝑍 ) ) ) | 
						
							| 68 | 25 67 | jca | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  GrpHom  𝑍 )  ∧  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( ( mulGrp ‘ 𝑌 )  MndHom  ( mulGrp ‘ 𝑍 ) ) ) ) | 
						
							| 69 | 47 54 | isrhm | ⊢ ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  RingHom  𝑍 )  ↔  ( ( 𝑌  ∈  Ring  ∧  𝑍  ∈  Ring )  ∧  ( ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  GrpHom  𝑍 )  ∧  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( ( mulGrp ‘ 𝑌 )  MndHom  ( mulGrp ‘ 𝑍 ) ) ) ) ) | 
						
							| 70 | 9 13 68 69 | syl21anbrc | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐵  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( 𝑌  RingHom  𝑍 ) ) |