Metamath Proof Explorer


Theorem pwsco2rhm

Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Hypotheses pwsco2rhm.y 𝑌 = ( 𝑅s 𝐴 )
pwsco2rhm.z 𝑍 = ( 𝑆s 𝐴 )
pwsco2rhm.b 𝐵 = ( Base ‘ 𝑌 )
pwsco2rhm.a ( 𝜑𝐴𝑉 )
pwsco2rhm.f ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
Assertion pwsco2rhm ( 𝜑 → ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) )

Proof

Step Hyp Ref Expression
1 pwsco2rhm.y 𝑌 = ( 𝑅s 𝐴 )
2 pwsco2rhm.z 𝑍 = ( 𝑆s 𝐴 )
3 pwsco2rhm.b 𝐵 = ( Base ‘ 𝑌 )
4 pwsco2rhm.a ( 𝜑𝐴𝑉 )
5 pwsco2rhm.f ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
6 rhmrcl1 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring )
7 5 6 syl ( 𝜑𝑅 ∈ Ring )
8 1 pwsring ( ( 𝑅 ∈ Ring ∧ 𝐴𝑉 ) → 𝑌 ∈ Ring )
9 7 4 8 syl2anc ( 𝜑𝑌 ∈ Ring )
10 rhmrcl2 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring )
11 5 10 syl ( 𝜑𝑆 ∈ Ring )
12 2 pwsring ( ( 𝑆 ∈ Ring ∧ 𝐴𝑉 ) → 𝑍 ∈ Ring )
13 11 4 12 syl2anc ( 𝜑𝑍 ∈ Ring )
14 rhmghm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
15 5 14 syl ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) )
16 ghmmhm ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) )
17 15 16 syl ( 𝜑𝐹 ∈ ( 𝑅 MndHom 𝑆 ) )
18 1 2 3 4 17 pwsco2mhm ( 𝜑 → ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) )
19 ringgrp ( 𝑌 ∈ Ring → 𝑌 ∈ Grp )
20 9 19 syl ( 𝜑𝑌 ∈ Grp )
21 ringgrp ( 𝑍 ∈ Ring → 𝑍 ∈ Grp )
22 13 21 syl ( 𝜑𝑍 ∈ Grp )
23 ghmmhmb ( ( 𝑌 ∈ Grp ∧ 𝑍 ∈ Grp ) → ( 𝑌 GrpHom 𝑍 ) = ( 𝑌 MndHom 𝑍 ) )
24 20 22 23 syl2anc ( 𝜑 → ( 𝑌 GrpHom 𝑍 ) = ( 𝑌 MndHom 𝑍 ) )
25 18 24 eleqtrrd ( 𝜑 → ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) )
26 eqid ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 )
27 eqid ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 )
28 eqid ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) )
29 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
30 eqid ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 )
31 29 30 rhmmhm ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) )
32 5 31 syl ( 𝜑𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) )
33 26 27 28 4 32 pwsco2mhm ( 𝜑 → ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ↦ ( 𝐹𝑔 ) ) ∈ ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) MndHom ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) )
34 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
35 1 34 pwsbas ( ( 𝑅 ∈ Ring ∧ 𝐴𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ 𝑌 ) )
36 7 4 35 syl2anc ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ 𝑌 ) )
37 36 3 eqtr4di ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = 𝐵 )
38 29 ringmgp ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
39 7 38 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
40 29 34 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
41 26 40 pwsbas ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐴𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) )
42 39 4 41 syl2anc ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) )
43 37 42 eqtr3d ( 𝜑𝐵 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) )
44 43 mpteq1d ( 𝜑 → ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) = ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ↦ ( 𝐹𝑔 ) ) )
45 eqidd ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) )
46 eqidd ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) )
47 eqid ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 )
48 eqid ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) )
49 eqid ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) )
50 eqid ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) )
51 1 29 26 47 48 28 49 50 pwsmgp ( ( 𝑅 ∈ Ring ∧ 𝐴𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) )
52 7 4 51 syl2anc ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) )
53 52 simpld ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) )
54 eqid ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 )
55 eqid ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) )
56 eqid ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) )
57 eqid ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) )
58 eqid ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) )
59 2 30 27 54 55 56 57 58 pwsmgp ( ( 𝑆 ∈ Ring ∧ 𝐴𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) )
60 11 4 59 syl2anc ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) )
61 60 simpld ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) )
62 52 simprd ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) )
63 62 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) 𝑦 ) )
64 60 simprd ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) )
65 64 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) 𝑦 ) )
66 45 46 53 61 63 65 mhmpropd ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) = ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) MndHom ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) )
67 33 44 66 3eltr4d ( 𝜑 → ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) )
68 25 67 jca ( 𝜑 → ( ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ∧ ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) )
69 47 54 isrhm ( ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) ↔ ( ( 𝑌 ∈ Ring ∧ 𝑍 ∈ Ring ) ∧ ( ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ∧ ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) ) )
70 9 13 68 69 syl21anbrc ( 𝜑 → ( 𝑔𝐵 ↦ ( 𝐹𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) )