Description: Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pwsdiagel.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
pwsdiagel.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
pwsdiagel.c | ⊢ 𝐶 = ( Base ‘ 𝑌 ) | ||
Assertion | pwsdiagel | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐼 × { 𝐴 } ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsdiagel.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) | |
2 | pwsdiagel.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
3 | pwsdiagel.c | ⊢ 𝐶 = ( Base ‘ 𝑌 ) | |
4 | fconst6g | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐼 × { 𝐴 } ) : 𝐼 ⟶ 𝐵 ) | |
5 | 4 | adantl | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐼 × { 𝐴 } ) : 𝐼 ⟶ 𝐵 ) |
6 | 1 2 3 | pwselbasb | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( ( 𝐼 × { 𝐴 } ) ∈ 𝐶 ↔ ( 𝐼 × { 𝐴 } ) : 𝐼 ⟶ 𝐵 ) ) |
7 | 6 | adantr | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐼 × { 𝐴 } ) ∈ 𝐶 ↔ ( 𝐼 × { 𝐴 } ) : 𝐼 ⟶ 𝐵 ) ) |
8 | 5 7 | mpbird | ⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐼 × { 𝐴 } ) ∈ 𝐶 ) |