Metamath Proof Explorer


Theorem pwsdiagel

Description: Membership of diagonal elements in the structure power base set. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiagel.y 𝑌 = ( 𝑅s 𝐼 )
pwsdiagel.b 𝐵 = ( Base ‘ 𝑅 )
pwsdiagel.c 𝐶 = ( Base ‘ 𝑌 )
Assertion pwsdiagel ( ( ( 𝑅𝑉𝐼𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐼 × { 𝐴 } ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 pwsdiagel.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsdiagel.b 𝐵 = ( Base ‘ 𝑅 )
3 pwsdiagel.c 𝐶 = ( Base ‘ 𝑌 )
4 fconst6g ( 𝐴𝐵 → ( 𝐼 × { 𝐴 } ) : 𝐼𝐵 )
5 4 adantl ( ( ( 𝑅𝑉𝐼𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐼 × { 𝐴 } ) : 𝐼𝐵 )
6 1 2 3 pwselbasb ( ( 𝑅𝑉𝐼𝑊 ) → ( ( 𝐼 × { 𝐴 } ) ∈ 𝐶 ↔ ( 𝐼 × { 𝐴 } ) : 𝐼𝐵 ) )
7 6 adantr ( ( ( 𝑅𝑉𝐼𝑊 ) ∧ 𝐴𝐵 ) → ( ( 𝐼 × { 𝐴 } ) ∈ 𝐶 ↔ ( 𝐼 × { 𝐴 } ) : 𝐼𝐵 ) )
8 5 7 mpbird ( ( ( 𝑅𝑉𝐼𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐼 × { 𝐴 } ) ∈ 𝐶 )