Step |
Hyp |
Ref |
Expression |
1 |
|
pwsdiagghm.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pwsdiagghm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
pwsdiagghm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) |
4 |
|
grpmnd |
⊢ ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd ) |
5 |
1 2 3
|
pwsdiagmhm |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) ) |
7 |
1
|
pwsgrp |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ Grp ) |
8 |
|
ghmmhmb |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ Grp ) → ( 𝑅 GrpHom 𝑌 ) = ( 𝑅 MndHom 𝑌 ) ) |
9 |
7 8
|
syldan |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 GrpHom 𝑌 ) = ( 𝑅 MndHom 𝑌 ) ) |
10 |
6 9
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |