Metamath Proof Explorer


Theorem pwsdiagghm

Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsdiagghm.y 𝑌 = ( 𝑅s 𝐼 )
pwsdiagghm.b 𝐵 = ( Base ‘ 𝑅 )
pwsdiagghm.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝐼 × { 𝑥 } ) )
Assertion pwsdiagghm ( ( 𝑅 ∈ Grp ∧ 𝐼𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) )

Proof

Step Hyp Ref Expression
1 pwsdiagghm.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsdiagghm.b 𝐵 = ( Base ‘ 𝑅 )
3 pwsdiagghm.f 𝐹 = ( 𝑥𝐵 ↦ ( 𝐼 × { 𝑥 } ) )
4 grpmnd ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd )
5 1 2 3 pwsdiagmhm ( ( 𝑅 ∈ Mnd ∧ 𝐼𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) )
6 4 5 sylan ( ( 𝑅 ∈ Grp ∧ 𝐼𝑊 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑌 ) )
7 1 pwsgrp ( ( 𝑅 ∈ Grp ∧ 𝐼𝑊 ) → 𝑌 ∈ Grp )
8 ghmmhmb ( ( 𝑅 ∈ Grp ∧ 𝑌 ∈ Grp ) → ( 𝑅 GrpHom 𝑌 ) = ( 𝑅 MndHom 𝑌 ) )
9 7 8 syldan ( ( 𝑅 ∈ Grp ∧ 𝐼𝑊 ) → ( 𝑅 GrpHom 𝑌 ) = ( 𝑅 MndHom 𝑌 ) )
10 6 9 eleqtrrd ( ( 𝑅 ∈ Grp ∧ 𝐼𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) )