| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsdiagghm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwsdiagghm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | pwsdiagghm.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐼  ×  { 𝑥 } ) ) | 
						
							| 4 |  | grpmnd | ⊢ ( 𝑅  ∈  Grp  →  𝑅  ∈  Mnd ) | 
						
							| 5 | 1 2 3 | pwsdiagmhm | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  MndHom  𝑌 ) ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  MndHom  𝑌 ) ) | 
						
							| 7 | 1 | pwsgrp | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑊 )  →  𝑌  ∈  Grp ) | 
						
							| 8 |  | ghmmhmb | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑌  ∈  Grp )  →  ( 𝑅  GrpHom  𝑌 )  =  ( 𝑅  MndHom  𝑌 ) ) | 
						
							| 9 | 7 8 | syldan | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑊 )  →  ( 𝑅  GrpHom  𝑌 )  =  ( 𝑅  MndHom  𝑌 ) ) | 
						
							| 10 | 6 9 | eleqtrrd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑌 ) ) |