| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsdiagmhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwsdiagmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | pwsdiagmhm.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐼  ×  { 𝑥 } ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝑅  ∈  Mnd ) | 
						
							| 5 | 1 | pwsmnd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝑌  ∈  Mnd ) | 
						
							| 6 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 7 | 3 | fdiagfn | ⊢ ( ( 𝐵  ∈  V  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 ⟶ ( 𝐵  ↑m  𝐼 ) ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( 𝐼  ∈  𝑊  →  𝐹 : 𝐵 ⟶ ( 𝐵  ↑m  𝐼 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 ⟶ ( 𝐵  ↑m  𝐼 ) ) | 
						
							| 10 | 1 2 | pwsbas | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝐵  ↑m  𝐼 )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 11 | 10 | feq3d | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝐹 : 𝐵 ⟶ ( 𝐵  ↑m  𝐼 )  ↔  𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 ) ) ) | 
						
							| 12 | 9 11 | mpbid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝐼  ∈  𝑊 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 15 | 2 14 | mndcl | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 16 | 15 | 3expb | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 18 | 3 | fvdiagfn | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝐼  ×  { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) | 
						
							| 19 | 13 17 18 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( 𝐼  ×  { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) | 
						
							| 20 | 3 | fvdiagfn | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑎  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐼  ×  { 𝑎 } ) ) | 
						
							| 21 | 3 | fvdiagfn | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐼  ×  { 𝑏 } ) ) | 
						
							| 22 | 20 21 | oveqan12d | ⊢ ( ( ( 𝐼  ∈  𝑊  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝐼  ∈  𝑊  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐼  ×  { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼  ×  { 𝑏 } ) ) ) | 
						
							| 23 | 22 | anandis | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐼  ×  { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼  ×  { 𝑏 } ) ) ) | 
						
							| 24 | 23 | adantll | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐼  ×  { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼  ×  { 𝑏 } ) ) ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 26 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 27 | 1 2 25 | pwsdiagel | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝐼  ×  { 𝑎 } )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 28 | 27 | adantrr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐼  ×  { 𝑎 } )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 29 | 1 2 25 | pwsdiagel | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  𝑏  ∈  𝐵 )  →  ( 𝐼  ×  { 𝑏 } )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 30 | 29 | adantrl | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐼  ×  { 𝑏 } )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 31 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 32 | 1 25 26 13 28 30 14 31 | pwsplusgval | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐼  ×  { 𝑎 } ) ( +g ‘ 𝑌 ) ( 𝐼  ×  { 𝑏 } ) )  =  ( ( 𝐼  ×  { 𝑎 } )  ∘f  ( +g ‘ 𝑅 ) ( 𝐼  ×  { 𝑏 } ) ) ) | 
						
							| 33 |  | id | ⊢ ( 𝐼  ∈  𝑊  →  𝐼  ∈  𝑊 ) | 
						
							| 34 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( 𝐼  ∈  𝑊  →  𝑎  ∈  V ) | 
						
							| 36 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( 𝐼  ∈  𝑊  →  𝑏  ∈  V ) | 
						
							| 38 | 33 35 37 | ofc12 | ⊢ ( 𝐼  ∈  𝑊  →  ( ( 𝐼  ×  { 𝑎 } )  ∘f  ( +g ‘ 𝑅 ) ( 𝐼  ×  { 𝑏 } ) )  =  ( 𝐼  ×  { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) | 
						
							| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐼  ×  { 𝑎 } )  ∘f  ( +g ‘ 𝑅 ) ( 𝐼  ×  { 𝑏 } ) )  =  ( 𝐼  ×  { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) | 
						
							| 40 | 24 32 39 | 3eqtrd | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) )  =  ( 𝐼  ×  { ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) } ) ) | 
						
							| 41 | 19 40 | eqtr4d | ⊢ ( ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 42 | 41 | ralrimivva | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝐼  ∈  𝑊 ) | 
						
							| 44 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 45 | 2 44 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 47 | 3 | fvdiagfn | ⊢ ( ( 𝐼  ∈  𝑊  ∧  ( 0g ‘ 𝑅 )  ∈  𝐵 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 𝐼  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 48 | 43 46 47 | syl2anc | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 𝐼  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 49 | 1 44 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝐼  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 50 | 48 49 | eqtrd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 51 | 12 42 50 | 3jca | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 )  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 52 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 53 | 2 25 14 31 44 52 | ismhm | ⊢ ( 𝐹  ∈  ( 𝑅  MndHom  𝑌 )  ↔  ( ( 𝑅  ∈  Mnd  ∧  𝑌  ∈  Mnd )  ∧  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑌 )  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑌 ) ( 𝐹 ‘ 𝑏 ) )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 54 | 4 5 51 53 | syl21anbrc | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  MndHom  𝑌 ) ) |