| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsdiagrhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwsdiagrhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | pwsdiagrhm.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐼  ×  { 𝑥 } ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝑅  ∈  Ring ) | 
						
							| 5 | 1 | pwsring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝑌  ∈  Ring ) | 
						
							| 6 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 7 | 1 2 3 | pwsdiagghm | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑌 ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  GrpHom  𝑌 ) ) | 
						
							| 9 |  | eqid | ⊢ ( mulGrp ‘ 𝑅 )  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 10 | 9 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  ( mulGrp ‘ 𝑅 )  ∈  Mnd ) | 
						
							| 11 |  | eqid | ⊢ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 )  =  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) | 
						
							| 12 | 9 2 | mgpbas | ⊢ 𝐵  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | 
						
							| 13 | 11 12 3 | pwsdiagmhm | ⊢ ( ( ( mulGrp ‘ 𝑅 )  ∈  Mnd  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) ) | 
						
							| 14 | 10 13 | sylan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( Base ‘ ( mulGrp ‘ 𝑅 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) | 
						
							| 16 |  | eqidd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 21 |  | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) | 
						
							| 22 | 1 9 11 17 18 19 20 21 | pwsmgp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) ) ) | 
						
							| 23 | 22 | simpld | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) ) | 
						
							| 24 |  | eqidd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) )  ∧  𝑧  ∈  ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) )  →  ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 )  =  ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) ) | 
						
							| 25 | 22 | simprd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) ) | 
						
							| 26 | 25 | oveqdr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  ∧  ( 𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  ∧  𝑧  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) )  →  ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑧 )  =  ( 𝑦 ( +g ‘ ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) 𝑧 ) ) | 
						
							| 27 | 15 16 15 23 24 26 | mhmpropd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑌 ) )  =  ( ( mulGrp ‘ 𝑅 )  MndHom  ( ( mulGrp ‘ 𝑅 )  ↑s  𝐼 ) ) ) | 
						
							| 28 | 14 27 | eleqtrrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 29 | 8 28 | jca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑌 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) ) | 
						
							| 30 | 9 17 | isrhm | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑌 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  Ring )  ∧  ( 𝐹  ∈  ( 𝑅  GrpHom  𝑌 )  ∧  𝐹  ∈  ( ( mulGrp ‘ 𝑅 )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) ) ) | 
						
							| 31 | 4 5 29 30 | syl21anbrc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑊 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑌 ) ) |