Step |
Hyp |
Ref |
Expression |
1 |
|
pwsdiagrhm.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pwsdiagrhm.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
pwsdiagrhm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐼 × { 𝑥 } ) ) |
4 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 ∈ Ring ) |
5 |
1
|
pwsring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑌 ∈ Ring ) |
6 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
7 |
1 2 3
|
pwsdiagghm |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ) |
9 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
10 |
9
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
11 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) |
12 |
9 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
13 |
11 12 3
|
pwsdiagmhm |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
14 |
10 13
|
sylan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
15 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
16 |
|
eqidd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
17 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
18 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) |
20 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
21 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) |
22 |
1 9 11 17 18 19 20 21
|
pwsmgp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) ) |
23 |
22
|
simpld |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
24 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) ) → ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑅 ) ) 𝑧 ) ) |
25 |
22
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
26 |
25
|
oveqdr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑧 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑦 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) 𝑧 ) ) |
27 |
15 16 15 23 24 26
|
mhmpropd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) = ( ( mulGrp ‘ 𝑅 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐼 ) ) ) |
28 |
14 27
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) |
29 |
8 28
|
jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) |
30 |
9 17
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑌 ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑌 ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) ) |
31 |
4 5 29 30
|
syl21anbrc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑌 ) ) |