Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
⊢ ( 𝑛 = ∅ → suc 𝑛 = suc ∅ ) |
2 |
1
|
raleqdv |
⊢ ( 𝑛 = ∅ → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
3 |
|
iuneq1 |
⊢ ( 𝑛 = ∅ → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) = ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑛 = ∅ → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ ∅ ) ) |
5 |
3 4
|
breq12d |
⊢ ( 𝑛 = ∅ → ( ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ↔ ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ ∅ ) ) ) |
6 |
2 5
|
imbi12d |
⊢ ( 𝑛 = ∅ → ( ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ ∅ ) ) ) ) |
7 |
|
suceq |
⊢ ( 𝑛 = 𝑚 → suc 𝑛 = suc 𝑚 ) |
8 |
7
|
raleqdv |
⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
9 |
|
iuneq1 |
⊢ ( 𝑛 = 𝑚 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) = ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ 𝑚 ) ) |
11 |
9 10
|
breq12d |
⊢ ( 𝑛 = 𝑚 → ( ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ↔ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
12 |
8 11
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) ) |
13 |
|
suceq |
⊢ ( 𝑛 = suc 𝑚 → suc 𝑛 = suc suc 𝑚 ) |
14 |
13
|
raleqdv |
⊢ ( 𝑛 = suc 𝑚 → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
15 |
|
iuneq1 |
⊢ ( 𝑛 = suc 𝑚 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) = ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑛 = suc 𝑚 → ( 𝐵 ‘ 𝑛 ) = ( 𝐵 ‘ suc 𝑚 ) ) |
17 |
15 16
|
breq12d |
⊢ ( 𝑛 = suc 𝑚 → ( ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ↔ ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
18 |
14 17
|
imbi12d |
⊢ ( 𝑛 = suc 𝑚 → ( ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ↔ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) ) |
19 |
|
0iun |
⊢ ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) = ∅ |
20 |
|
0ex |
⊢ ∅ ∈ V |
21 |
20
|
sucid |
⊢ ∅ ∈ suc ∅ |
22 |
|
fveq2 |
⊢ ( 𝑘 = ∅ → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ ∅ ) ) |
23 |
|
pweq |
⊢ ( 𝑘 = ∅ → 𝒫 𝑘 = 𝒫 ∅ ) |
24 |
22 23
|
breq12d |
⊢ ( 𝑘 = ∅ → ( ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ ) ) |
25 |
24
|
rspcv |
⊢ ( ∅ ∈ suc ∅ → ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ ) ) |
26 |
21 25
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ ) |
27 |
20
|
canth2 |
⊢ ∅ ≺ 𝒫 ∅ |
28 |
|
ensym |
⊢ ( ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ → 𝒫 ∅ ≈ ( 𝐵 ‘ ∅ ) ) |
29 |
|
sdomentr |
⊢ ( ( ∅ ≺ 𝒫 ∅ ∧ 𝒫 ∅ ≈ ( 𝐵 ‘ ∅ ) ) → ∅ ≺ ( 𝐵 ‘ ∅ ) ) |
30 |
27 28 29
|
sylancr |
⊢ ( ( 𝐵 ‘ ∅ ) ≈ 𝒫 ∅ → ∅ ≺ ( 𝐵 ‘ ∅ ) ) |
31 |
26 30
|
syl |
⊢ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∅ ≺ ( 𝐵 ‘ ∅ ) ) |
32 |
19 31
|
eqbrtrid |
⊢ ( ∀ 𝑘 ∈ suc ∅ ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ ∅ ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ ∅ ) ) |
33 |
|
sssucid |
⊢ suc 𝑚 ⊆ suc suc 𝑚 |
34 |
|
ssralv |
⊢ ( suc 𝑚 ⊆ suc suc 𝑚 → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) ) |
35 |
33 34
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) |
36 |
|
pm2.27 |
⊢ ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
37 |
35 36
|
syl |
⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ) |
39 |
|
vex |
⊢ 𝑚 ∈ V |
40 |
39
|
sucid |
⊢ 𝑚 ∈ suc 𝑚 |
41 |
|
elelsuc |
⊢ ( 𝑚 ∈ suc 𝑚 → 𝑚 ∈ suc suc 𝑚 ) |
42 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑚 ) ) |
43 |
|
pweq |
⊢ ( 𝑘 = 𝑚 → 𝒫 𝑘 = 𝒫 𝑚 ) |
44 |
42 43
|
breq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) ) |
45 |
44
|
rspcv |
⊢ ( 𝑚 ∈ suc suc 𝑚 → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) ) |
46 |
40 41 45
|
mp2b |
⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) |
47 |
|
djuen |
⊢ ( ( ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ∧ ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ) |
48 |
46 46 47
|
syl2anc |
⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ) |
49 |
|
pwdju1 |
⊢ ( 𝑚 ∈ ω → ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 ( 𝑚 ⊔ 1o ) ) |
50 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
51 |
|
ordirr |
⊢ ( Ord 𝑚 → ¬ 𝑚 ∈ 𝑚 ) |
52 |
50 51
|
syl |
⊢ ( 𝑚 ∈ ω → ¬ 𝑚 ∈ 𝑚 ) |
53 |
|
dju1en |
⊢ ( ( 𝑚 ∈ ω ∧ ¬ 𝑚 ∈ 𝑚 ) → ( 𝑚 ⊔ 1o ) ≈ suc 𝑚 ) |
54 |
52 53
|
mpdan |
⊢ ( 𝑚 ∈ ω → ( 𝑚 ⊔ 1o ) ≈ suc 𝑚 ) |
55 |
|
pwen |
⊢ ( ( 𝑚 ⊔ 1o ) ≈ suc 𝑚 → 𝒫 ( 𝑚 ⊔ 1o ) ≈ 𝒫 suc 𝑚 ) |
56 |
54 55
|
syl |
⊢ ( 𝑚 ∈ ω → 𝒫 ( 𝑚 ⊔ 1o ) ≈ 𝒫 suc 𝑚 ) |
57 |
|
entr |
⊢ ( ( ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 ( 𝑚 ⊔ 1o ) ∧ 𝒫 ( 𝑚 ⊔ 1o ) ≈ 𝒫 suc 𝑚 ) → ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 suc 𝑚 ) |
58 |
49 56 57
|
syl2anc |
⊢ ( 𝑚 ∈ ω → ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 suc 𝑚 ) |
59 |
|
entr |
⊢ ( ( ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ∧ ( 𝒫 𝑚 ⊔ 𝒫 𝑚 ) ≈ 𝒫 suc 𝑚 ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ 𝒫 suc 𝑚 ) |
60 |
48 58 59
|
syl2an |
⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ 𝒫 suc 𝑚 ) |
61 |
39
|
sucex |
⊢ suc 𝑚 ∈ V |
62 |
61
|
sucid |
⊢ suc 𝑚 ∈ suc suc 𝑚 |
63 |
|
fveq2 |
⊢ ( 𝑘 = suc 𝑚 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ suc 𝑚 ) ) |
64 |
|
pweq |
⊢ ( 𝑘 = suc 𝑚 → 𝒫 𝑘 = 𝒫 suc 𝑚 ) |
65 |
63 64
|
breq12d |
⊢ ( 𝑘 = suc 𝑚 → ( ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ↔ ( 𝐵 ‘ suc 𝑚 ) ≈ 𝒫 suc 𝑚 ) ) |
66 |
65
|
rspcv |
⊢ ( suc 𝑚 ∈ suc suc 𝑚 → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ suc 𝑚 ) ≈ 𝒫 suc 𝑚 ) ) |
67 |
62 66
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( 𝐵 ‘ suc 𝑚 ) ≈ 𝒫 suc 𝑚 ) |
68 |
67
|
ensymd |
⊢ ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → 𝒫 suc 𝑚 ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
69 |
68
|
adantr |
⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → 𝒫 suc 𝑚 ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
70 |
|
entr |
⊢ ( ( ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ 𝒫 suc 𝑚 ∧ 𝒫 suc 𝑚 ≈ ( 𝐵 ‘ suc 𝑚 ) ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
71 |
60 69 70
|
syl2anc |
⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
72 |
71
|
ancoms |
⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) |
73 |
|
nnfi |
⊢ ( 𝑚 ∈ ω → 𝑚 ∈ Fin ) |
74 |
|
pwfi |
⊢ ( 𝑚 ∈ Fin ↔ 𝒫 𝑚 ∈ Fin ) |
75 |
|
isfinite |
⊢ ( 𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω ) |
76 |
74 75
|
bitri |
⊢ ( 𝑚 ∈ Fin ↔ 𝒫 𝑚 ≺ ω ) |
77 |
73 76
|
sylib |
⊢ ( 𝑚 ∈ ω → 𝒫 𝑚 ≺ ω ) |
78 |
|
ensdomtr |
⊢ ( ( ( 𝐵 ‘ 𝑚 ) ≈ 𝒫 𝑚 ∧ 𝒫 𝑚 ≺ ω ) → ( 𝐵 ‘ 𝑚 ) ≺ ω ) |
79 |
46 77 78
|
syl2an |
⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( 𝐵 ‘ 𝑚 ) ≺ ω ) |
80 |
|
isfinite |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin ↔ ( 𝐵 ‘ 𝑚 ) ≺ ω ) |
81 |
79 80
|
sylibr |
⊢ ( ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ∧ 𝑚 ∈ ω ) → ( 𝐵 ‘ 𝑚 ) ∈ Fin ) |
82 |
81
|
ancoms |
⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( 𝐵 ‘ 𝑚 ) ∈ Fin ) |
83 |
39 42
|
iunsuc |
⊢ ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) = ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∪ ( 𝐵 ‘ 𝑚 ) ) |
84 |
|
fvex |
⊢ ( 𝐵 ‘ 𝑘 ) ∈ V |
85 |
39 84
|
iunex |
⊢ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ V |
86 |
|
fvex |
⊢ ( 𝐵 ‘ 𝑚 ) ∈ V |
87 |
|
undjudom |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ V ∧ ( 𝐵 ‘ 𝑚 ) ∈ V ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∪ ( 𝐵 ‘ 𝑚 ) ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
88 |
85 86 87
|
mp2an |
⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∪ ( 𝐵 ‘ 𝑚 ) ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) |
89 |
83 88
|
eqbrtri |
⊢ ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) |
90 |
|
sdomtr |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ≺ ω ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ω ) |
91 |
80 90
|
sylan2b |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ω ) |
92 |
|
isfinite |
⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin ↔ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ω ) |
93 |
91 92
|
sylibr |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin ) |
94 |
|
finnum |
⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card ) |
95 |
93 94
|
syl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card ) |
96 |
|
finnum |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( 𝐵 ‘ 𝑚 ) ∈ dom card ) |
97 |
96
|
adantl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( 𝐵 ‘ 𝑚 ) ∈ dom card ) |
98 |
|
cardadju |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card ∧ ( 𝐵 ‘ 𝑚 ) ∈ dom card ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
99 |
95 97 98
|
syl2anc |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
100 |
|
ficardom |
⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ Fin → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ) |
101 |
93 100
|
syl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ) |
102 |
|
ficardom |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) |
103 |
102
|
adantl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) |
104 |
|
cardid2 |
⊢ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∈ dom card → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) |
105 |
93 94 104
|
3syl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) |
106 |
|
simpl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) |
107 |
|
cardid2 |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ dom card → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ 𝑚 ) ) |
108 |
|
ensym |
⊢ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ 𝑚 ) → ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
109 |
96 107 108
|
3syl |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
110 |
109
|
adantl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
111 |
|
ensdomtr |
⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∧ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( 𝐵 ‘ 𝑚 ) ) |
112 |
|
sdomentr |
⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
113 |
111 112
|
sylan |
⊢ ( ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≈ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ∧ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) ∧ ( 𝐵 ‘ 𝑚 ) ≈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
114 |
105 106 110 113
|
syl21anc |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
115 |
|
cardon |
⊢ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ On |
116 |
|
cardon |
⊢ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ On |
117 |
|
onenon |
⊢ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ On → ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ dom card ) |
118 |
116 117
|
ax-mp |
⊢ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ dom card |
119 |
|
cardsdomel |
⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ On ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ dom card ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) ) |
120 |
115 118 119
|
mp2an |
⊢ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
121 |
|
cardidm |
⊢ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) = ( card ‘ ( 𝐵 ‘ 𝑚 ) ) |
122 |
121
|
eleq2i |
⊢ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
123 |
120 122
|
bitri |
⊢ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ≺ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
124 |
114 123
|
sylib |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) |
125 |
|
nnaordr |
⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ↔ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) ) |
126 |
125
|
biimpa |
⊢ ( ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) ∧ ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) ∈ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
127 |
101 103 103 124 126
|
syl31anc |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
128 |
|
nnacl |
⊢ ( ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ∧ ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ∈ ω ) → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ω ) |
129 |
102 102 128
|
syl2anc |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ω ) |
130 |
|
cardnn |
⊢ ( ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ω → ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) = ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
131 |
129 130
|
syl |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) = ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
132 |
131
|
adantl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) = ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
133 |
127 132
|
eleqtrrd |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) ) |
134 |
|
cardsdomelir |
⊢ ( ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∈ ( card ‘ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
135 |
133 134
|
syl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
136 |
|
ensdomtr |
⊢ ( ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∧ ( ( card ‘ ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
137 |
99 135 136
|
syl2anc |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
138 |
|
cardadju |
⊢ ( ( ( 𝐵 ‘ 𝑚 ) ∈ dom card ∧ ( 𝐵 ‘ 𝑚 ) ∈ dom card ) → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
139 |
96 96 138
|
syl2anc |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ) |
140 |
139
|
ensymd |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≈ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
141 |
140
|
adantl |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≈ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
142 |
|
sdomentr |
⊢ ( ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ∧ ( ( card ‘ ( 𝐵 ‘ 𝑚 ) ) +o ( card ‘ ( 𝐵 ‘ 𝑚 ) ) ) ≈ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
143 |
137 141 142
|
syl2anc |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
144 |
|
domsdomtr |
⊢ ( ( ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≼ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ∧ ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
145 |
89 143 144
|
sylancr |
⊢ ( ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ∧ ( 𝐵 ‘ 𝑚 ) ∈ Fin ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) |
146 |
145
|
expcom |
⊢ ( ( 𝐵 ‘ 𝑚 ) ∈ Fin → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) ) |
147 |
82 146
|
syl |
⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ) ) |
148 |
|
sdomentr |
⊢ ( ( ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ∧ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) |
149 |
148
|
expcom |
⊢ ( ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) ≈ ( 𝐵 ‘ suc 𝑚 ) → ( ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( ( 𝐵 ‘ 𝑚 ) ⊔ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
150 |
72 147 149
|
sylsyld |
⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
151 |
38 150
|
syld |
⊢ ( ( 𝑚 ∈ ω ∧ ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) |
152 |
151
|
ex |
⊢ ( 𝑚 ∈ ω → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) ) |
153 |
152
|
com23 |
⊢ ( 𝑚 ∈ ω → ( ( ∀ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑚 ) ) → ( ∀ 𝑘 ∈ suc suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ suc 𝑚 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ suc 𝑚 ) ) ) ) |
154 |
6 12 18 32 153
|
finds1 |
⊢ ( 𝑛 ∈ ω → ( ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) ) |
155 |
154
|
imp |
⊢ ( ( 𝑛 ∈ ω ∧ ∀ 𝑘 ∈ suc 𝑛 ( 𝐵 ‘ 𝑘 ) ≈ 𝒫 𝑘 ) → ∪ 𝑘 ∈ 𝑛 ( 𝐵 ‘ 𝑘 ) ≺ ( 𝐵 ‘ 𝑛 ) ) |