Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
pwselbas
Metamath Proof Explorer
Description: An element of a structure power is a function from the index set to the
base set of the structure. (Contributed by Mario Carneiro , 11-Jan-2015) (Revised by Mario Carneiro , 5-Jun-2015)
Ref
Expression
Hypotheses
pwsbas.y
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 )
pwsbas.f
⊢ 𝐵 = ( Base ‘ 𝑅 )
pwselbas.v
⊢ 𝑉 = ( Base ‘ 𝑌 )
pwselbas.r
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 )
pwselbas.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 )
pwselbas.x
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 )
Assertion
pwselbas
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
pwsbas.y
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 )
2
pwsbas.f
⊢ 𝐵 = ( Base ‘ 𝑅 )
3
pwselbas.v
⊢ 𝑉 = ( Base ‘ 𝑌 )
4
pwselbas.r
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 )
5
pwselbas.i
⊢ ( 𝜑 → 𝐼 ∈ 𝑍 )
6
pwselbas.x
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 )
7
1 2 3
pwselbasb
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) )
8
4 5 7
syl2anc
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) )
9
6 8
mpbid
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ 𝐵 )