Metamath Proof Explorer


Theorem pwselbas

Description: An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Hypotheses pwsbas.y 𝑌 = ( 𝑅s 𝐼 )
pwsbas.f 𝐵 = ( Base ‘ 𝑅 )
pwselbas.v 𝑉 = ( Base ‘ 𝑌 )
pwselbas.r ( 𝜑𝑅𝑊 )
pwselbas.i ( 𝜑𝐼𝑍 )
pwselbas.x ( 𝜑𝑋𝑉 )
Assertion pwselbas ( 𝜑𝑋 : 𝐼𝐵 )

Proof

Step Hyp Ref Expression
1 pwsbas.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsbas.f 𝐵 = ( Base ‘ 𝑅 )
3 pwselbas.v 𝑉 = ( Base ‘ 𝑌 )
4 pwselbas.r ( 𝜑𝑅𝑊 )
5 pwselbas.i ( 𝜑𝐼𝑍 )
6 pwselbas.x ( 𝜑𝑋𝑉 )
7 1 2 3 pwselbasb ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝑋𝑉𝑋 : 𝐼𝐵 ) )
8 4 5 7 syl2anc ( 𝜑 → ( 𝑋𝑉𝑋 : 𝐼𝐵 ) )
9 6 8 mpbid ( 𝜑𝑋 : 𝐼𝐵 )