Metamath Proof Explorer


Theorem pwselbasb

Description: Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses pwsbas.y 𝑌 = ( 𝑅s 𝐼 )
pwsbas.f 𝐵 = ( Base ‘ 𝑅 )
pwselbas.v 𝑉 = ( Base ‘ 𝑌 )
Assertion pwselbasb ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝑋𝑉𝑋 : 𝐼𝐵 ) )

Proof

Step Hyp Ref Expression
1 pwsbas.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsbas.f 𝐵 = ( Base ‘ 𝑅 )
3 pwselbas.v 𝑉 = ( Base ‘ 𝑌 )
4 1 2 pwsbas ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝐵m 𝐼 ) = ( Base ‘ 𝑌 ) )
5 4 3 eqtr4di ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝐵m 𝐼 ) = 𝑉 )
6 5 eleq2d ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝑋 ∈ ( 𝐵m 𝐼 ) ↔ 𝑋𝑉 ) )
7 2 fvexi 𝐵 ∈ V
8 elmapg ( ( 𝐵 ∈ V ∧ 𝐼𝑍 ) → ( 𝑋 ∈ ( 𝐵m 𝐼 ) ↔ 𝑋 : 𝐼𝐵 ) )
9 7 8 mpan ( 𝐼𝑍 → ( 𝑋 ∈ ( 𝐵m 𝐼 ) ↔ 𝑋 : 𝐼𝐵 ) )
10 9 adantl ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝑋 ∈ ( 𝐵m 𝐼 ) ↔ 𝑋 : 𝐼𝐵 ) )
11 6 10 bitr3d ( ( 𝑅𝑊𝐼𝑍 ) → ( 𝑋𝑉𝑋 : 𝐼𝐵 ) )