Step |
Hyp |
Ref |
Expression |
1 |
|
pwsbas.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pwsbas.f |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
pwselbas.v |
⊢ 𝑉 = ( Base ‘ 𝑌 ) |
4 |
1 2
|
pwsbas |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝐵 ↑m 𝐼 ) = ( Base ‘ 𝑌 ) ) |
5 |
4 3
|
eqtr4di |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝐵 ↑m 𝐼 ) = 𝑉 ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 ∈ 𝑉 ) ) |
7 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
8 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
9 |
7 8
|
mpan |
⊢ ( 𝐼 ∈ 𝑍 → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |
11 |
6 10
|
bitr3d |
⊢ ( ( 𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 : 𝐼 ⟶ 𝐵 ) ) |