| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pwsgprod.y | 
							⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 )  | 
						
						
							| 2 | 
							
								
							 | 
							pwsgprod.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							pwsgprod.o | 
							⊢  1   =  ( 1r ‘ 𝑌 )  | 
						
						
							| 4 | 
							
								
							 | 
							pwsgprod.m | 
							⊢ 𝑀  =  ( mulGrp ‘ 𝑌 )  | 
						
						
							| 5 | 
							
								
							 | 
							pwsgprod.t | 
							⊢ 𝑇  =  ( mulGrp ‘ 𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							pwsgprod.i | 
							⊢ ( 𝜑  →  𝐼  ∈  𝑉 )  | 
						
						
							| 7 | 
							
								
							 | 
							pwsgprod.j | 
							⊢ ( 𝜑  →  𝐽  ∈  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							pwsgprod.r | 
							⊢ ( 𝜑  →  𝑅  ∈  CRing )  | 
						
						
							| 9 | 
							
								
							 | 
							pwsgprod.f | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 ) )  →  𝑈  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							pwsgprod.w | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) )  finSupp   1  )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							mgpbas | 
							⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑀 )  | 
						
						
							| 13 | 
							
								4 3
							 | 
							ringidval | 
							⊢  1   =  ( 0g ‘ 𝑀 )  | 
						
						
							| 14 | 
							
								1
							 | 
							pwscrng | 
							⊢ ( ( 𝑅  ∈  CRing  ∧  𝐼  ∈  𝑉 )  →  𝑌  ∈  CRing )  | 
						
						
							| 15 | 
							
								8 6 14
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝑌  ∈  CRing )  | 
						
						
							| 16 | 
							
								4
							 | 
							crngmgp | 
							⊢ ( 𝑌  ∈  CRing  →  𝑀  ∈  CMnd )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  CMnd )  | 
						
						
							| 18 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  →  𝑅  ∈  CRing )  | 
						
						
							| 19 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 20 | 
							
								9
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑦  ∈  𝐽 )  →  𝑈  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							an32s | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  ∧  𝑥  ∈  𝐼 )  →  𝑈  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								21
							 | 
							fmpttd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝐼  ↦  𝑈 ) : 𝐼 ⟶ 𝐵 )  | 
						
						
							| 23 | 
							
								1 2 11 18 19 22
							 | 
							pwselbasr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝐼  ↦  𝑈 )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) )  | 
						
						
							| 25 | 
							
								12 13 17 7 24 10
							 | 
							gsumcl | 
							⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 26 | 
							
								1 2 11 8 6 25
							 | 
							pwselbas | 
							⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) : 𝐼 ⟶ 𝐵 )  | 
						
						
							| 27 | 
							
								26
							 | 
							ffnd | 
							⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  Fn  𝐼 )  | 
						
						
							| 28 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝑀  | 
						
						
							| 29 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥  Σg   | 
						
						
							| 30 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝐽  | 
						
						
							| 31 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐼  ↦  𝑈 )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							nfmpt | 
							⊢ Ⅎ 𝑥 ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) )  | 
						
						
							| 33 | 
							
								28 29 32
							 | 
							nfov | 
							⊢ Ⅎ 𝑥 ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							dffn5f | 
							⊢ ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  Fn  𝐼  ↔  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ‘ 𝑥 ) ) )  | 
						
						
							| 35 | 
							
								27 34
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ‘ 𝑥 ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 )  | 
						
						
							| 37 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐼  ↦  𝑈 )  =  ( 𝑥  ∈  𝐼  ↦  𝑈 )  | 
						
						
							| 38 | 
							
								37
							 | 
							fvmpt2 | 
							⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑈  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑈 ) ‘ 𝑥 )  =  𝑈 )  | 
						
						
							| 39 | 
							
								36 20 38
							 | 
							syl2an2r | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑦  ∈  𝐽 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑈 ) ‘ 𝑥 )  =  𝑈 )  | 
						
						
							| 40 | 
							
								39
							 | 
							mpteq2dva | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑦  ∈  𝐽  ↦  ( ( 𝑥  ∈  𝐼  ↦  𝑈 ) ‘ 𝑥 ) )  =  ( 𝑦  ∈  𝐽  ↦  𝑈 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( 𝑥  ∈  𝐼  ↦  𝑈 ) ‘ 𝑥 ) ) )  =  ( 𝑇  Σg  ( 𝑦  ∈  𝐽  ↦  𝑈 ) ) )  | 
						
						
							| 42 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑀  ∈  CMnd )  | 
						
						
							| 43 | 
							
								5
							 | 
							crngmgp | 
							⊢ ( 𝑅  ∈  CRing  →  𝑇  ∈  CMnd )  | 
						
						
							| 44 | 
							
								8 43
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑇  ∈  CMnd )  | 
						
						
							| 45 | 
							
								44
							 | 
							cmnmndd | 
							⊢ ( 𝜑  →  𝑇  ∈  Mnd )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑇  ∈  Mnd )  | 
						
						
							| 47 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐽  ∈  𝑊 )  | 
						
						
							| 48 | 
							
								8
							 | 
							crngringd | 
							⊢ ( 𝜑  →  𝑅  ∈  Ring )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  Ring )  | 
						
						
							| 50 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑉 )  | 
						
						
							| 51 | 
							
								1 11 4 5 49 50 36
							 | 
							pwspjmhmmgpd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ↦  ( 𝑎 ‘ 𝑥 ) )  ∈  ( 𝑀  MndHom  𝑇 ) )  | 
						
						
							| 52 | 
							
								23
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑥  ∈  𝐼  ↦  𝑈 )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 53 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) )  finSupp   1  )  | 
						
						
							| 54 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑎  =  ( 𝑥  ∈  𝐼  ↦  𝑈 )  →  ( 𝑎 ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐼  ↦  𝑈 ) ‘ 𝑥 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							fveq1 | 
							⊢ ( 𝑎  =  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  →  ( 𝑎 ‘ 𝑥 )  =  ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ‘ 𝑥 ) )  | 
						
						
							| 56 | 
							
								12 13 42 46 47 51 52 53 54 55
							 | 
							gsummhm2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( 𝑥  ∈  𝐼  ↦  𝑈 ) ‘ 𝑥 ) ) )  =  ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ‘ 𝑥 ) )  | 
						
						
							| 57 | 
							
								41 56
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑇  Σg  ( 𝑦  ∈  𝐽  ↦  𝑈 ) )  =  ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ‘ 𝑥 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑇  Σg  ( 𝑦  ∈  𝐽  ↦  𝑈 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ‘ 𝑥 ) ) )  | 
						
						
							| 59 | 
							
								35 58
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑇  Σg  ( 𝑦  ∈  𝐽  ↦  𝑈 ) ) ) )  |