| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsgsum.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwsgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | pwsgsum.z | ⊢  0   =  ( 0g ‘ 𝑌 ) | 
						
							| 4 |  | pwsgsum.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 5 |  | pwsgsum.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑊 ) | 
						
							| 6 |  | pwsgsum.r | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 7 |  | pwsgsum.f | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 ) )  →  𝑈  ∈  𝐵 ) | 
						
							| 8 |  | pwsgsum.w | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) )  finSupp   0  ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 10 | 1 9 | pwsval | ⊢ ( ( 𝑅  ∈  CMnd  ∧  𝐼  ∈  𝑉 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 11 | 6 4 10 | syl2anc | ⊢ ( 𝜑  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝜑  →  ( 𝑌  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  =  ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) ) ) | 
						
							| 13 |  | fconstmpt | ⊢ ( 𝐼  ×  { 𝑅 } )  =  ( 𝑥  ∈  𝐼  ↦  𝑅 ) | 
						
							| 14 | 13 | oveq2i | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  =  ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 16 |  | fvexd | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑅 )  ∈  V ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  CMnd ) | 
						
							| 18 | 11 | fveq2d | ⊢ ( 𝜑  →  ( 0g ‘ 𝑌 )  =  ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 19 | 3 18 | eqtrid | ⊢ ( 𝜑  →   0   =  ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 20 | 8 19 | breqtrd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) )  finSupp  ( 0g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 21 | 14 2 15 4 5 16 17 7 20 | prdsgsum | ⊢ ( 𝜑  →  ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑈 ) ) ) ) | 
						
							| 22 | 12 21 | eqtrd | ⊢ ( 𝜑  →  ( 𝑌  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑥  ∈  𝐼  ↦  𝑈 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑈 ) ) ) ) |