| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsgrp.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwsinvg.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | pwsinvg.m | ⊢ 𝑀  =  ( invg ‘ 𝑅 ) | 
						
							| 4 |  | pwsinvg.n | ⊢ 𝑁  =  ( invg ‘ 𝑌 ) | 
						
							| 5 |  | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝐼  ∈  𝑉 ) | 
						
							| 7 |  | fvexd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( Scalar ‘ 𝑅 )  ∈  V ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 9 |  | fconst6g | ⊢ ( 𝑅  ∈  Grp  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ Grp ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ Grp ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  =  ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 13 |  | simp3 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 15 | 1 14 | pwsval | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 18 | 2 17 | eqtrid | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝐵  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 19 | 13 18 | eleqtrd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 20 | 5 6 7 10 11 12 19 | prdsinvgd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ‘ 𝑋 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 21 |  | fvconst2g | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 )  =  𝑅 ) | 
						
							| 22 | 8 21 | sylan | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 )  =  𝑅 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐼 )  →  ( invg ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) )  =  ( invg ‘ 𝑅 ) ) | 
						
							| 24 | 23 3 | eqtr4di | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐼 )  →  ( invg ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) )  =  𝑀 ) | 
						
							| 25 | 24 | fveq1d | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐼 )  →  ( ( invg ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) )  =  ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) | 
						
							| 26 | 25 | mpteq2dva | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 27 | 20 26 | eqtrd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ‘ 𝑋 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 28 | 16 | fveq2d | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( invg ‘ 𝑌 )  =  ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 29 | 4 28 | eqtrid | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑁  =  ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  =  ( ( invg ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ‘ 𝑋 ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 32 | 1 31 2 8 6 13 | pwselbas | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 | 32 | feqmptd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑋 ‘ 𝑥 ) ) ) | 
						
							| 35 | 31 3 | grpinvf | ⊢ ( 𝑅  ∈  Grp  →  𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 36 | 8 35 | syl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑀 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 36 | feqmptd | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑀  =  ( 𝑦  ∈  ( Base ‘ 𝑅 )  ↦  ( 𝑀 ‘ 𝑦 ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑋 ‘ 𝑥 )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) | 
						
							| 39 | 33 34 37 38 | fmptco | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀  ∘  𝑋 )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑀 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 27 30 39 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐼  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  =  ( 𝑀  ∘  𝑋 ) ) |