Step |
Hyp |
Ref |
Expression |
1 |
|
pwslnm.y |
⊢ 𝑌 = ( 𝑊 ↑s 𝐼 ) |
2 |
|
oveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑊 ↑s 𝑎 ) = ( 𝑊 ↑s ∅ ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ↔ ( 𝑊 ↑s ∅ ) ∈ LNoeM ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑎 = ∅ → ( ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s ∅ ) ∈ LNoeM ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑊 ↑s 𝑎 ) = ( 𝑊 ↑s 𝑏 ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ↔ ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑊 ↑s 𝑎 ) = ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ↔ ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑎 = 𝐼 → ( 𝑊 ↑s 𝑎 ) = ( 𝑊 ↑s 𝐼 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ↔ ( 𝑊 ↑s 𝐼 ) ∈ LNoeM ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑎 = 𝐼 → ( ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝑎 ) ∈ LNoeM ) ↔ ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝐼 ) ∈ LNoeM ) ) ) |
14 |
|
lnmlmod |
⊢ ( 𝑊 ∈ LNoeM → 𝑊 ∈ LMod ) |
15 |
|
eqid |
⊢ ( 𝑊 ↑s ∅ ) = ( 𝑊 ↑s ∅ ) |
16 |
15
|
pwslnmlem0 |
⊢ ( 𝑊 ∈ LMod → ( 𝑊 ↑s ∅ ) ∈ LNoeM ) |
17 |
14 16
|
syl |
⊢ ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s ∅ ) ∈ LNoeM ) |
18 |
|
vex |
⊢ 𝑏 ∈ V |
19 |
|
snex |
⊢ { 𝑐 } ∈ V |
20 |
|
eqid |
⊢ ( 𝑊 ↑s 𝑏 ) = ( 𝑊 ↑s 𝑏 ) |
21 |
|
eqid |
⊢ ( 𝑊 ↑s { 𝑐 } ) = ( 𝑊 ↑s { 𝑐 } ) |
22 |
|
eqid |
⊢ ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) = ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) |
23 |
14
|
ad2antrl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) → 𝑊 ∈ LMod ) |
24 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑐 } ) = ∅ ↔ ¬ 𝑐 ∈ 𝑏 ) |
25 |
24
|
biimpri |
⊢ ( ¬ 𝑐 ∈ 𝑏 → ( 𝑏 ∩ { 𝑐 } ) = ∅ ) |
26 |
25
|
ad2antlr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) → ( 𝑏 ∩ { 𝑐 } ) = ∅ ) |
27 |
|
simprr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) → ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) |
28 |
21
|
pwslnmlem1 |
⊢ ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s { 𝑐 } ) ∈ LNoeM ) |
29 |
28
|
ad2antrl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) → ( 𝑊 ↑s { 𝑐 } ) ∈ LNoeM ) |
30 |
18 19 20 21 22 23 26 27 29
|
pwslnmlem2 |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( 𝑊 ∈ LNoeM ∧ ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) ) → ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) |
31 |
30
|
exp32 |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( 𝑊 ∈ LNoeM → ( ( 𝑊 ↑s 𝑏 ) ∈ LNoeM → ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) ) |
32 |
31
|
a2d |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝑏 ) ∈ LNoeM ) → ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s ( 𝑏 ∪ { 𝑐 } ) ) ∈ LNoeM ) ) ) |
33 |
4 7 10 13 17 32
|
findcard2s |
⊢ ( 𝐼 ∈ Fin → ( 𝑊 ∈ LNoeM → ( 𝑊 ↑s 𝐼 ) ∈ LNoeM ) ) |
34 |
33
|
impcom |
⊢ ( ( 𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin ) → ( 𝑊 ↑s 𝐼 ) ∈ LNoeM ) |
35 |
1 34
|
eqeltrid |
⊢ ( ( 𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin ) → 𝑌 ∈ LNoeM ) |