Metamath Proof Explorer


Theorem pwslnmlem0

Description: Zeroeth powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis pwslnmlem0.y 𝑌 = ( 𝑊s ∅ )
Assertion pwslnmlem0 ( 𝑊 ∈ LMod → 𝑌 ∈ LNoeM )

Proof

Step Hyp Ref Expression
1 pwslnmlem0.y 𝑌 = ( 𝑊s ∅ )
2 0ex ∅ ∈ V
3 1 pwslmod ( ( 𝑊 ∈ LMod ∧ ∅ ∈ V ) → 𝑌 ∈ LMod )
4 2 3 mpan2 ( 𝑊 ∈ LMod → 𝑌 ∈ LMod )
5 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
6 1 5 pwsbas ( ( 𝑊 ∈ LMod ∧ ∅ ∈ V ) → ( ( Base ‘ 𝑊 ) ↑m ∅ ) = ( Base ‘ 𝑌 ) )
7 2 6 mpan2 ( 𝑊 ∈ LMod → ( ( Base ‘ 𝑊 ) ↑m ∅ ) = ( Base ‘ 𝑌 ) )
8 fvex ( Base ‘ 𝑊 ) ∈ V
9 map0e ( ( Base ‘ 𝑊 ) ∈ V → ( ( Base ‘ 𝑊 ) ↑m ∅ ) = 1o )
10 8 9 ax-mp ( ( Base ‘ 𝑊 ) ↑m ∅ ) = 1o
11 df1o2 1o = { ∅ }
12 10 11 eqtri ( ( Base ‘ 𝑊 ) ↑m ∅ ) = { ∅ }
13 snfi { ∅ } ∈ Fin
14 12 13 eqeltri ( ( Base ‘ 𝑊 ) ↑m ∅ ) ∈ Fin
15 7 14 eqeltrrdi ( 𝑊 ∈ LMod → ( Base ‘ 𝑌 ) ∈ Fin )
16 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
17 16 filnm ( ( 𝑌 ∈ LMod ∧ ( Base ‘ 𝑌 ) ∈ Fin ) → 𝑌 ∈ LNoeM )
18 4 15 17 syl2anc ( 𝑊 ∈ LMod → 𝑌 ∈ LNoeM )