| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwslnmlem0.y |
⊢ 𝑌 = ( 𝑊 ↑s ∅ ) |
| 2 |
|
0ex |
⊢ ∅ ∈ V |
| 3 |
1
|
pwslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ ∅ ∈ V ) → 𝑌 ∈ LMod ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝑊 ∈ LMod → 𝑌 ∈ LMod ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 6 |
1 5
|
pwsbas |
⊢ ( ( 𝑊 ∈ LMod ∧ ∅ ∈ V ) → ( ( Base ‘ 𝑊 ) ↑m ∅ ) = ( Base ‘ 𝑌 ) ) |
| 7 |
2 6
|
mpan2 |
⊢ ( 𝑊 ∈ LMod → ( ( Base ‘ 𝑊 ) ↑m ∅ ) = ( Base ‘ 𝑌 ) ) |
| 8 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
| 9 |
|
map0e |
⊢ ( ( Base ‘ 𝑊 ) ∈ V → ( ( Base ‘ 𝑊 ) ↑m ∅ ) = 1o ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( Base ‘ 𝑊 ) ↑m ∅ ) = 1o |
| 11 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 12 |
10 11
|
eqtri |
⊢ ( ( Base ‘ 𝑊 ) ↑m ∅ ) = { ∅ } |
| 13 |
|
snfi |
⊢ { ∅ } ∈ Fin |
| 14 |
12 13
|
eqeltri |
⊢ ( ( Base ‘ 𝑊 ) ↑m ∅ ) ∈ Fin |
| 15 |
7 14
|
eqeltrrdi |
⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑌 ) ∈ Fin ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 17 |
16
|
filnm |
⊢ ( ( 𝑌 ∈ LMod ∧ ( Base ‘ 𝑌 ) ∈ Fin ) → 𝑌 ∈ LNoeM ) |
| 18 |
4 15 17
|
syl2anc |
⊢ ( 𝑊 ∈ LMod → 𝑌 ∈ LNoeM ) |