Step |
Hyp |
Ref |
Expression |
1 |
|
pwslnmlem1.y |
⊢ 𝑌 = ( 𝑊 ↑s { 𝑖 } ) |
2 |
|
lnmlmod |
⊢ ( 𝑊 ∈ LNoeM → 𝑊 ∈ LMod ) |
3 |
|
snex |
⊢ { 𝑖 } ∈ V |
4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) |
6 |
1 4 5
|
pwsdiaglmhm |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑖 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) ∈ ( 𝑊 LMHom 𝑌 ) ) |
7 |
2 3 6
|
sylancl |
⊢ ( 𝑊 ∈ LNoeM → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) ∈ ( 𝑊 LMHom 𝑌 ) ) |
8 |
|
id |
⊢ ( 𝑊 ∈ LNoeM → 𝑊 ∈ LNoeM ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
10 |
1 4 5 9
|
pwssnf1o |
⊢ ( ( 𝑊 ∈ LNoeM ∧ 𝑖 ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) |
11 |
10
|
elvd |
⊢ ( 𝑊 ∈ LNoeM → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) |
12 |
|
f1ofo |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –onto→ ( Base ‘ 𝑌 ) ) |
13 |
|
forn |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –onto→ ( Base ‘ 𝑌 ) → ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( Base ‘ 𝑌 ) ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝑊 ∈ LNoeM → ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( Base ‘ 𝑌 ) ) |
15 |
9
|
lnmepi |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) ∈ ( 𝑊 LMHom 𝑌 ) ∧ 𝑊 ∈ LNoeM ∧ ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( Base ‘ 𝑌 ) ) → 𝑌 ∈ LNoeM ) |
16 |
7 8 14 15
|
syl3anc |
⊢ ( 𝑊 ∈ LNoeM → 𝑌 ∈ LNoeM ) |