Metamath Proof Explorer


Theorem pwslnmlem1

Description: First powers are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis pwslnmlem1.y 𝑌 = ( 𝑊s { 𝑖 } )
Assertion pwslnmlem1 ( 𝑊 ∈ LNoeM → 𝑌 ∈ LNoeM )

Proof

Step Hyp Ref Expression
1 pwslnmlem1.y 𝑌 = ( 𝑊s { 𝑖 } )
2 lnmlmod ( 𝑊 ∈ LNoeM → 𝑊 ∈ LMod )
3 snex { 𝑖 } ∈ V
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 eqid ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) )
6 1 4 5 pwsdiaglmhm ( ( 𝑊 ∈ LMod ∧ { 𝑖 } ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) ∈ ( 𝑊 LMHom 𝑌 ) )
7 2 3 6 sylancl ( 𝑊 ∈ LNoeM → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) ∈ ( 𝑊 LMHom 𝑌 ) )
8 id ( 𝑊 ∈ LNoeM → 𝑊 ∈ LNoeM )
9 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
10 1 4 5 9 pwssnf1o ( ( 𝑊 ∈ LNoeM ∧ 𝑖 ∈ V ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) )
11 10 elvd ( 𝑊 ∈ LNoeM → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) )
12 f1ofo ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –onto→ ( Base ‘ 𝑌 ) )
13 forn ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) : ( Base ‘ 𝑊 ) –onto→ ( Base ‘ 𝑌 ) → ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( Base ‘ 𝑌 ) )
14 11 12 13 3syl ( 𝑊 ∈ LNoeM → ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( Base ‘ 𝑌 ) )
15 9 lnmepi ( ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) ∈ ( 𝑊 LMHom 𝑌 ) ∧ 𝑊 ∈ LNoeM ∧ ran ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( { 𝑖 } × { 𝑥 } ) ) = ( Base ‘ 𝑌 ) ) → 𝑌 ∈ LNoeM )
16 7 8 14 15 syl3anc ( 𝑊 ∈ LNoeM → 𝑌 ∈ LNoeM )