| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwslnmlem2.a |
⊢ 𝐴 ∈ V |
| 2 |
|
pwslnmlem2.b |
⊢ 𝐵 ∈ V |
| 3 |
|
pwslnmlem2.x |
⊢ 𝑋 = ( 𝑊 ↑s 𝐴 ) |
| 4 |
|
pwslnmlem2.y |
⊢ 𝑌 = ( 𝑊 ↑s 𝐵 ) |
| 5 |
|
pwslnmlem2.z |
⊢ 𝑍 = ( 𝑊 ↑s ( 𝐴 ∪ 𝐵 ) ) |
| 6 |
|
pwslnmlem2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
pwslnmlem2.dj |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 8 |
|
pwslnmlem2.xn |
⊢ ( 𝜑 → 𝑋 ∈ LNoeM ) |
| 9 |
|
pwslnmlem2.yn |
⊢ ( 𝜑 → 𝑌 ∈ LNoeM ) |
| 10 |
1 2
|
unex |
⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 12 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) |
| 17 |
5 3 14 15 16
|
pwssplit3 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ∈ ( 𝑍 LMHom 𝑋 ) ) |
| 18 |
6 11 13 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ∈ ( 𝑍 LMHom 𝑋 ) ) |
| 19 |
|
fvex |
⊢ ( 0g ‘ 𝑋 ) ∈ V |
| 20 |
16
|
mptiniseg |
⊢ ( ( 0g ‘ 𝑋 ) ∈ V → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) = { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 0g ‘ 𝑋 ) } ) |
| 21 |
19 20
|
ax-mp |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) = { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 0g ‘ 𝑋 ) } |
| 22 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 23 |
|
grpmnd |
⊢ ( 𝑊 ∈ Grp → 𝑊 ∈ Mnd ) |
| 24 |
6 22 23
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Mnd ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 26 |
3 25
|
pws0g |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝐴 ∈ V ) → ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) = ( 0g ‘ 𝑋 ) ) |
| 27 |
24 1 26
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) = ( 0g ‘ 𝑋 ) ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑋 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑥 ↾ 𝐴 ) = ( 0g ‘ 𝑋 ) ↔ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) ) ) |
| 30 |
29
|
rabbidv |
⊢ ( 𝜑 → { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 0g ‘ 𝑋 ) } = { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) |
| 31 |
21 30
|
eqtrid |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) = { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝜑 → ( 𝑍 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) ) = ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) ) |
| 33 |
|
eqid |
⊢ { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } = { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } |
| 34 |
|
eqid |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ↦ ( 𝑦 ↾ 𝐵 ) ) = ( 𝑦 ∈ { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ↦ ( 𝑦 ↾ 𝐵 ) ) |
| 35 |
|
eqid |
⊢ ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) = ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) |
| 36 |
5 14 25 33 34 3 4 35
|
pwssplit4 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑦 ∈ { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ↦ ( 𝑦 ↾ 𝐵 ) ) ∈ ( ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) LMIso 𝑌 ) ) |
| 37 |
6 11 7 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ↦ ( 𝑦 ↾ 𝐵 ) ) ∈ ( ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) LMIso 𝑌 ) ) |
| 38 |
|
brlmici |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ↦ ( 𝑦 ↾ 𝐵 ) ) ∈ ( ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) LMIso 𝑌 ) → ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) ≃𝑚 𝑌 ) |
| 39 |
|
lnmlmic |
⊢ ( ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) ≃𝑚 𝑌 → ( ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) ∈ LNoeM ↔ 𝑌 ∈ LNoeM ) ) |
| 40 |
37 38 39
|
3syl |
⊢ ( 𝜑 → ( ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) ∈ LNoeM ↔ 𝑌 ∈ LNoeM ) ) |
| 41 |
9 40
|
mpbird |
⊢ ( 𝜑 → ( 𝑍 ↾s { 𝑥 ∈ ( Base ‘ 𝑍 ) ∣ ( 𝑥 ↾ 𝐴 ) = ( 𝐴 × { ( 0g ‘ 𝑊 ) } ) } ) ∈ LNoeM ) |
| 42 |
32 41
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑍 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) ) ∈ LNoeM ) |
| 43 |
5 3 14 15 16
|
pwssplit1 |
⊢ ( ( 𝑊 ∈ Mnd ∧ ( 𝐴 ∪ 𝐵 ) ∈ V ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) : ( Base ‘ 𝑍 ) –onto→ ( Base ‘ 𝑋 ) ) |
| 44 |
24 11 13 43
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) : ( Base ‘ 𝑍 ) –onto→ ( Base ‘ 𝑋 ) ) |
| 45 |
|
forn |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) : ( Base ‘ 𝑍 ) –onto→ ( Base ‘ 𝑋 ) → ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) = ( Base ‘ 𝑋 ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) = ( Base ‘ 𝑋 ) ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ) = ( 𝑋 ↾s ( Base ‘ 𝑋 ) ) ) |
| 48 |
15
|
ressid |
⊢ ( 𝑋 ∈ LNoeM → ( 𝑋 ↾s ( Base ‘ 𝑋 ) ) = 𝑋 ) |
| 49 |
8 48
|
syl |
⊢ ( 𝜑 → ( 𝑋 ↾s ( Base ‘ 𝑋 ) ) = 𝑋 ) |
| 50 |
47 49
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ) = 𝑋 ) |
| 51 |
50 8
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ) ∈ LNoeM ) |
| 52 |
|
eqid |
⊢ ( 0g ‘ 𝑋 ) = ( 0g ‘ 𝑋 ) |
| 53 |
|
eqid |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) = ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) |
| 54 |
|
eqid |
⊢ ( 𝑍 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) ) = ( 𝑍 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) ) |
| 55 |
|
eqid |
⊢ ( 𝑋 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ) = ( 𝑋 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ) |
| 56 |
52 53 54 55
|
lmhmlnmsplit |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ∈ ( 𝑍 LMHom 𝑋 ) ∧ ( 𝑍 ↾s ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝑋 ) } ) ) ∈ LNoeM ∧ ( 𝑋 ↾s ran ( 𝑥 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑥 ↾ 𝐴 ) ) ) ∈ LNoeM ) → 𝑍 ∈ LNoeM ) |
| 57 |
18 42 51 56
|
syl3anc |
⊢ ( 𝜑 → 𝑍 ∈ LNoeM ) |