Metamath Proof Explorer


Theorem pwsms

Description: A power of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis pwsms.y 𝑌 = ( 𝑅s 𝐼 )
Assertion pwsms ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → 𝑌 ∈ MetSp )

Proof

Step Hyp Ref Expression
1 pwsms.y 𝑌 = ( 𝑅s 𝐼 )
2 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
3 1 2 pwsval ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
4 fvexd ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → ( Scalar ‘ 𝑅 ) ∈ V )
5 simpr ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → 𝐼 ∈ Fin )
6 fconst6g ( 𝑅 ∈ MetSp → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ MetSp )
7 6 adantr ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ MetSp )
8 eqid ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) )
9 8 prdsms ( ( ( Scalar ‘ 𝑅 ) ∈ V ∧ 𝐼 ∈ Fin ∧ ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ MetSp ) → ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ∈ MetSp )
10 4 5 7 9 syl3anc ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ∈ MetSp )
11 3 10 eqeltrd ( ( 𝑅 ∈ MetSp ∧ 𝐼 ∈ Fin ) → 𝑌 ∈ MetSp )