| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsplusgval.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwsplusgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | pwsplusgval.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | pwsplusgval.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | pwsplusgval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 6 |  | pwsplusgval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 7 |  | pwsmulrval.a | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | pwsmulrval.p | ⊢  ∙   =  ( .r ‘ 𝑌 ) | 
						
							| 9 |  | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 11 |  | fvexd | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑅 )  ∈  V ) | 
						
							| 12 |  | fnconstg | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝐼  ×  { 𝑅 } )  Fn  𝐼 ) | 
						
							| 13 | 3 12 | syl | ⊢ ( 𝜑  →  ( 𝐼  ×  { 𝑅 } )  Fn  𝐼 ) | 
						
							| 14 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 15 | 1 14 | pwsval | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 16 | 3 4 15 | syl2anc | ⊢ ( 𝜑  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 18 | 2 17 | eqtrid | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 19 | 5 18 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 20 | 6 18 | eleqtrd | ⊢ ( 𝜑  →  𝐺  ∈  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  =  ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 22 | 9 10 11 4 13 19 20 21 | prdsmulrval | ⊢ ( 𝜑  →  ( 𝐹 ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) 𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 23 |  | fvconst2g | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 )  =  𝑅 ) | 
						
							| 24 | 3 23 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 )  =  𝑅 ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( .r ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) )  =  ( .r ‘ 𝑅 ) ) | 
						
							| 26 | 25 7 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( .r ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) )  =   ·  ) | 
						
							| 27 | 26 | oveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 28 | 27 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 22 28 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) 𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 30 | 16 | fveq2d | ⊢ ( 𝜑  →  ( .r ‘ 𝑌 )  =  ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 31 | 8 30 | eqtrid | ⊢ ( 𝜑  →   ∙   =  ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 32 | 31 | oveqd | ⊢ ( 𝜑  →  ( 𝐹  ∙  𝐺 )  =  ( 𝐹 ( .r ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) 𝐺 ) ) | 
						
							| 33 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑥 )  ∈  V ) | 
						
							| 34 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐺 ‘ 𝑥 )  ∈  V ) | 
						
							| 35 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 36 | 1 35 2 3 4 5 | pwselbas | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 36 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 38 | 1 35 2 3 4 6 | pwselbas | ⊢ ( 𝜑  →  𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 39 | 38 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑥  ∈  𝐼  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 40 | 4 33 34 37 39 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 )  ·  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 29 32 40 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∙  𝐺 )  =  ( 𝐹  ∘f   ·  𝐺 ) ) |