Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | pwsn | ⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn | ⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) | |
2 | 1 | abbii | ⊢ { 𝑥 ∣ 𝑥 ⊆ { 𝐴 } } = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) } |
3 | df-pw | ⊢ 𝒫 { 𝐴 } = { 𝑥 ∣ 𝑥 ⊆ { 𝐴 } } | |
4 | dfpr2 | ⊢ { ∅ , { 𝐴 } } = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) } | |
5 | 2 3 4 | 3eqtr4i | ⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } |