Metamath Proof Explorer


Theorem pwsn

Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006)

Ref Expression
Assertion pwsn 𝒫 { 𝐴 } = { ∅ , { 𝐴 } }

Proof

Step Hyp Ref Expression
1 sssn ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) )
2 1 abbii { 𝑥𝑥 ⊆ { 𝐴 } } = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) }
3 df-pw 𝒫 { 𝐴 } = { 𝑥𝑥 ⊆ { 𝐴 } }
4 dfpr2 { ∅ , { 𝐴 } } = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) }
5 2 3 4 3eqtr4i 𝒫 { 𝐴 } = { ∅ , { 𝐴 } }