Step |
Hyp |
Ref |
Expression |
1 |
|
dfss2 |
⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ { 𝐴 } ) ) |
2 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝐴 } ↔ 𝑦 = 𝐴 ) |
3 |
2
|
imbi2i |
⊢ ( ( 𝑦 ∈ 𝑥 → 𝑦 ∈ { 𝐴 } ) ↔ ( 𝑦 ∈ 𝑥 → 𝑦 = 𝐴 ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ { 𝐴 } ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 = 𝐴 ) ) |
5 |
1 4
|
bitri |
⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 = 𝐴 ) ) |
6 |
|
neq0 |
⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) |
7 |
|
exintr |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 = 𝐴 ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴 ) ) ) |
8 |
6 7
|
syl5bi |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 = 𝐴 ) → ( ¬ 𝑥 = ∅ → ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴 ) ) ) |
9 |
|
dfclel |
⊢ ( 𝐴 ∈ 𝑥 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
10 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴 ) ) |
11 |
9 10
|
bitr2i |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴 ) ↔ 𝐴 ∈ 𝑥 ) |
12 |
|
snssi |
⊢ ( 𝐴 ∈ 𝑥 → { 𝐴 } ⊆ 𝑥 ) |
13 |
11 12
|
sylbi |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ 𝑦 = 𝐴 ) → { 𝐴 } ⊆ 𝑥 ) |
14 |
8 13
|
syl6 |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 = 𝐴 ) → ( ¬ 𝑥 = ∅ → { 𝐴 } ⊆ 𝑥 ) ) |
15 |
5 14
|
sylbi |
⊢ ( 𝑥 ⊆ { 𝐴 } → ( ¬ 𝑥 = ∅ → { 𝐴 } ⊆ 𝑥 ) ) |
16 |
15
|
anc2li |
⊢ ( 𝑥 ⊆ { 𝐴 } → ( ¬ 𝑥 = ∅ → ( 𝑥 ⊆ { 𝐴 } ∧ { 𝐴 } ⊆ 𝑥 ) ) ) |
17 |
|
eqss |
⊢ ( 𝑥 = { 𝐴 } ↔ ( 𝑥 ⊆ { 𝐴 } ∧ { 𝐴 } ⊆ 𝑥 ) ) |
18 |
16 17
|
syl6ibr |
⊢ ( 𝑥 ⊆ { 𝐴 } → ( ¬ 𝑥 = ∅ → 𝑥 = { 𝐴 } ) ) |
19 |
18
|
orrd |
⊢ ( 𝑥 ⊆ { 𝐴 } → ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) |
20 |
|
0ss |
⊢ ∅ ⊆ { 𝐴 } |
21 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ { 𝐴 } ↔ ∅ ⊆ { 𝐴 } ) ) |
22 |
20 21
|
mpbiri |
⊢ ( 𝑥 = ∅ → 𝑥 ⊆ { 𝐴 } ) |
23 |
|
eqimss |
⊢ ( 𝑥 = { 𝐴 } → 𝑥 ⊆ { 𝐴 } ) |
24 |
22 23
|
jaoi |
⊢ ( ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) → 𝑥 ⊆ { 𝐴 } ) |
25 |
19 24
|
impbii |
⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) |
26 |
25
|
abbii |
⊢ { 𝑥 ∣ 𝑥 ⊆ { 𝐴 } } = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) } |
27 |
|
df-pw |
⊢ 𝒫 { 𝐴 } = { 𝑥 ∣ 𝑥 ⊆ { 𝐴 } } |
28 |
|
dfpr2 |
⊢ { ∅ , { 𝐴 } } = { 𝑥 ∣ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) } |
29 |
26 27 28
|
3eqtr4i |
⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } |