| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwspjmhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwspjmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | fvexd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( Scalar ‘ 𝑅 )  ∈  V ) | 
						
							| 7 |  | fconst6g | ⊢ ( 𝑅  ∈  Mnd  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ Mnd ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ Mnd ) | 
						
							| 9 |  | simp3 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  𝐴  ∈  𝐼 ) | 
						
							| 10 | 3 4 5 6 8 9 | prdspjmhm | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( 𝑥  ∈  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  ↦  ( 𝑥 ‘ 𝐴 ) )  ∈  ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  MndHom  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝐴 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 12 | 1 11 | pwsval | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 13 | 12 | 3adant3 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( Base ‘ 𝑌 )  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 15 | 2 14 | eqtrid | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  𝐵  =  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) ) | 
						
							| 16 | 15 | mpteq1d | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  =  ( 𝑥  ∈  ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) )  ↦  ( 𝑥 ‘ 𝐴 ) ) ) | 
						
							| 17 |  | fvconst2g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝐼 )  →  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝐴 )  =  𝑅 ) | 
						
							| 18 | 17 | 3adant2 | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝐴 )  =  𝑅 ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  𝑅  =  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝐴 ) ) | 
						
							| 20 | 13 19 | oveq12d | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( 𝑌  MndHom  𝑅 )  =  ( ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  MndHom  ( ( 𝐼  ×  { 𝑅 } ) ‘ 𝐴 ) ) ) | 
						
							| 21 | 10 16 20 | 3eltr4d | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐼  ∈  𝑉  ∧  𝐴  ∈  𝐼 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  ∈  ( 𝑌  MndHom  𝑅 ) ) |