| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwspjmhmmgpd.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | pwspjmhmmgpd.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | pwspjmhmmgpd.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 4 |  | pwspjmhmmgpd.t | ⊢ 𝑇  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 5 |  | pwspjmhmmgpd.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | pwspjmhmmgpd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 7 |  | pwspjmhmmgpd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐼 ) | 
						
							| 8 | 3 2 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 | 4 9 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑇 ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑌 )  =  ( .r ‘ 𝑌 ) | 
						
							| 12 | 3 11 | mgpplusg | ⊢ ( .r ‘ 𝑌 )  =  ( +g ‘ 𝑀 ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 14 | 4 13 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝑇 ) | 
						
							| 15 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 16 | 3 15 | ringidval | ⊢ ( 1r ‘ 𝑌 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 17 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 18 | 4 17 | ringidval | ⊢ ( 1r ‘ 𝑅 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 19 | 1 | pwsring | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  𝑌  ∈  Ring ) | 
						
							| 20 | 5 6 19 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  Ring ) | 
						
							| 21 | 3 | ringmgp | ⊢ ( 𝑌  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  𝑀  ∈  Mnd ) | 
						
							| 23 | 4 | ringmgp | ⊢ ( 𝑅  ∈  Ring  →  𝑇  ∈  Mnd ) | 
						
							| 24 | 5 23 | syl | ⊢ ( 𝜑  →  𝑇  ∈  Mnd ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 26 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐼  ∈  𝑉 ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 28 | 1 9 2 25 26 27 | pwselbas | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐴  ∈  𝐼 ) | 
						
							| 30 | 28 29 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ‘ 𝐴 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 31 | 30 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 33 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 34 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 35 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  𝐵 ) | 
						
							| 36 | 1 2 32 33 34 35 13 11 | pwsmulrval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 )  =  ( 𝑎  ∘f  ( .r ‘ 𝑅 ) 𝑏 ) ) | 
						
							| 37 | 36 | fveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 )  =  ( ( 𝑎  ∘f  ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 ) ) | 
						
							| 38 | 1 9 2 32 33 34 | pwselbas | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 39 | 38 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  Fn  𝐼 ) | 
						
							| 40 | 1 9 2 32 33 35 | pwselbas | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑏 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 40 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  Fn  𝐼 ) | 
						
							| 42 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 43 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝐴  ∈  𝐼 )  →  ( 𝑎 ‘ 𝐴 )  =  ( 𝑎 ‘ 𝐴 ) ) | 
						
							| 44 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝐴  ∈  𝐼 )  →  ( 𝑏 ‘ 𝐴 )  =  ( 𝑏 ‘ 𝐴 ) ) | 
						
							| 45 | 39 41 33 33 42 43 44 | ofval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝐴  ∈  𝐼 )  →  ( ( 𝑎  ∘f  ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 )  =  ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) | 
						
							| 46 | 7 45 | mpidan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑎  ∘f  ( .r ‘ 𝑅 ) 𝑏 ) ‘ 𝐴 )  =  ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) | 
						
							| 47 | 37 46 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 )  =  ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) | 
						
							| 48 | 2 11 | ringcl | ⊢ ( ( 𝑌  ∈  Ring  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 49 | 20 48 | syl3an1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 50 | 49 | 3expb | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 51 |  | fveq1 | ⊢ ( 𝑥  =  ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 )  →  ( 𝑥 ‘ 𝐴 )  =  ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) | 
						
							| 52 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  =  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) | 
						
							| 53 |  | fvex | ⊢ ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 )  ∈  V | 
						
							| 54 | 51 52 53 | fvmpt | ⊢ ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 )  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) | 
						
							| 55 | 50 54 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) ‘ 𝐴 ) ) | 
						
							| 56 |  | fveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ‘ 𝐴 )  =  ( 𝑎 ‘ 𝐴 ) ) | 
						
							| 57 |  | fvex | ⊢ ( 𝑎 ‘ 𝐴 )  ∈  V | 
						
							| 58 | 56 52 57 | fvmpt | ⊢ ( 𝑎  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 )  =  ( 𝑎 ‘ 𝐴 ) ) | 
						
							| 59 | 34 58 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 )  =  ( 𝑎 ‘ 𝐴 ) ) | 
						
							| 60 |  | fveq1 | ⊢ ( 𝑥  =  𝑏  →  ( 𝑥 ‘ 𝐴 )  =  ( 𝑏 ‘ 𝐴 ) ) | 
						
							| 61 |  | fvex | ⊢ ( 𝑏 ‘ 𝐴 )  ∈  V | 
						
							| 62 | 60 52 61 | fvmpt | ⊢ ( 𝑏  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 )  =  ( 𝑏 ‘ 𝐴 ) ) | 
						
							| 63 | 35 62 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 )  =  ( 𝑏 ‘ 𝐴 ) ) | 
						
							| 64 | 59 63 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) )  =  ( ( 𝑎 ‘ 𝐴 ) ( .r ‘ 𝑅 ) ( 𝑏 ‘ 𝐴 ) ) ) | 
						
							| 65 | 47 55 64 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 𝑎 ( .r ‘ 𝑌 ) 𝑏 ) )  =  ( ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑎 ) ( .r ‘ 𝑅 ) ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ 𝑏 ) ) ) | 
						
							| 66 | 2 15 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →  ( 1r ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 67 |  | fveq1 | ⊢ ( 𝑥  =  ( 1r ‘ 𝑌 )  →  ( 𝑥 ‘ 𝐴 )  =  ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 68 |  | fvex | ⊢ ( ( 1r ‘ 𝑌 ) ‘ 𝐴 )  ∈  V | 
						
							| 69 | 67 52 68 | fvmpt | ⊢ ( ( 1r ‘ 𝑌 )  ∈  𝐵  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) )  =  ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 70 | 20 66 69 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) )  =  ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 71 | 1 17 | pws1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  𝑉 )  →  ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 72 | 5 6 71 | syl2anc | ⊢ ( 𝜑  →  ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 73 | 72 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 )  =  ( ( 1r ‘ 𝑌 ) ‘ 𝐴 ) ) | 
						
							| 74 |  | fvex | ⊢ ( 1r ‘ 𝑅 )  ∈  V | 
						
							| 75 | 74 | fvconst2 | ⊢ ( 𝐴  ∈  𝐼  →  ( ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 76 | 7 75 | syl | ⊢ ( 𝜑  →  ( ( 𝐼  ×  { ( 1r ‘ 𝑅 ) } ) ‘ 𝐴 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 77 | 70 73 76 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) ) ‘ ( 1r ‘ 𝑌 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 78 | 8 10 12 14 16 18 22 24 31 65 77 | ismhmd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥 ‘ 𝐴 ) )  ∈  ( 𝑀  MndHom  𝑇 ) ) |