Step |
Hyp |
Ref |
Expression |
1 |
|
pwsplusgval.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pwsplusgval.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
pwsplusgval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
pwsplusgval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
pwsplusgval.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
6 |
|
pwsplusgval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
7 |
|
pwsplusgval.a |
⊢ + = ( +g ‘ 𝑅 ) |
8 |
|
pwsplusgval.p |
⊢ ✚ = ( +g ‘ 𝑌 ) |
9 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
11 |
|
fvexd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑅 ) ∈ V ) |
12 |
|
fnconstg |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) |
14 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
15 |
1 14
|
pwsval |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
16 |
3 4 15
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
18 |
2 17
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
19 |
5 18
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
20 |
6 18
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
21 |
|
eqid |
⊢ ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) = ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) |
22 |
9 10 11 4 13 19 20 21
|
prdsplusgval |
⊢ ( 𝜑 → ( 𝐹 ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
23 |
|
fvconst2g |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
24 |
3 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( +g ‘ 𝑅 ) ) |
26 |
25 7
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = + ) |
27 |
26
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
28 |
27
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
29 |
22 28
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
30 |
16
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
31 |
8 30
|
eqtrid |
⊢ ( 𝜑 → ✚ = ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
32 |
31
|
oveqd |
⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ( +g ‘ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ) 𝐺 ) ) |
33 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
34 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) |
35 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
36 |
1 35 2 3 4 5
|
pwselbas |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
37 |
36
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
38 |
1 35 2 3 4 6
|
pwselbas |
⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
39 |
38
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
40 |
4 33 34 37 39
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
41 |
29 32 40
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ✚ 𝐺 ) = ( 𝐹 ∘f + 𝐺 ) ) |