Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwssb | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵 ) | |
| 2 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) | |
| 3 | 1 2 | bitri | ⊢ ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) |