Metamath Proof Explorer


Theorem pwssb

Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion pwssb ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 sspwuni ( 𝐴 ⊆ 𝒫 𝐵 𝐴𝐵 )
2 unissb ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )
3 1 2 bitri ( 𝐴 ⊆ 𝒫 𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )