| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwssnf1o.y | ⊢ 𝑌  =  ( 𝑅  ↑s  { 𝐼 } ) | 
						
							| 2 |  | pwssnf1o.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | pwssnf1o.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( { 𝐼 }  ×  { 𝑥 } ) ) | 
						
							| 4 |  | pwssnf1o.c | ⊢ 𝐶  =  ( Base ‘ 𝑌 ) | 
						
							| 5 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  𝐼  ∈  𝑊 ) | 
						
							| 7 | 3 | mapsnf1o | ⊢ ( ( 𝐵  ∈  V  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 –1-1-onto→ ( 𝐵  ↑m  { 𝐼 } ) ) | 
						
							| 8 | 5 6 7 | sylancr | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 –1-1-onto→ ( 𝐵  ↑m  { 𝐼 } ) ) | 
						
							| 9 |  | snex | ⊢ { 𝐼 }  ∈  V | 
						
							| 10 | 1 2 | pwsbas | ⊢ ( ( 𝑅  ∈  𝑉  ∧  { 𝐼 }  ∈  V )  →  ( 𝐵  ↑m  { 𝐼 } )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 11 | 9 10 | mpan2 | ⊢ ( 𝑅  ∈  𝑉  →  ( 𝐵  ↑m  { 𝐼 } )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  ( 𝐵  ↑m  { 𝐼 } )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 13 | 4 12 | eqtr4id | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  𝐶  =  ( 𝐵  ↑m  { 𝐼 } ) ) | 
						
							| 14 | 13 | f1oeq3d | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  ( 𝐹 : 𝐵 –1-1-onto→ 𝐶  ↔  𝐹 : 𝐵 –1-1-onto→ ( 𝐵  ↑m  { 𝐼 } ) ) ) | 
						
							| 15 | 8 14 | mpbird | ⊢ ( ( 𝑅  ∈  𝑉  ∧  𝐼  ∈  𝑊 )  →  𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |