Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit1.y |
⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) |
2 |
|
pwssplit1.z |
⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) |
3 |
|
pwssplit1.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
pwssplit1.c |
⊢ 𝐶 = ( Base ‘ 𝑍 ) |
5 |
|
pwssplit1.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) |
6 |
1 2 3 4 5
|
pwssplit0 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑊 ∈ Mnd ) |
8 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑈 ∈ 𝑋 ) |
9 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) |
10 |
8 9
|
ssexd |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ∈ V ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
12 |
2 11 4
|
pwselbasb |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑉 ∈ V ) → ( 𝑎 ∈ 𝐶 ↔ 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
13 |
7 10 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑎 ∈ 𝐶 ↔ 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) ) |
14 |
13
|
biimpa |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ) |
15 |
|
fvex |
⊢ ( 0g ‘ 𝑊 ) ∈ V |
16 |
15
|
fconst |
⊢ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ { ( 0g ‘ 𝑊 ) } |
17 |
16
|
a1i |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ { ( 0g ‘ 𝑊 ) } ) |
18 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑊 ∈ Mnd ) |
19 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
20 |
11 19
|
mndidcl |
⊢ ( 𝑊 ∈ Mnd → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
21 |
18 20
|
syl |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 0g ‘ 𝑊 ) ∈ ( Base ‘ 𝑊 ) ) |
22 |
21
|
snssd |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → { ( 0g ‘ 𝑊 ) } ⊆ ( Base ‘ 𝑊 ) ) |
23 |
17 22
|
fssd |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) |
24 |
|
disjdif |
⊢ ( 𝑉 ∩ ( 𝑈 ∖ 𝑉 ) ) = ∅ |
25 |
24
|
a1i |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑉 ∩ ( 𝑈 ∖ 𝑉 ) ) = ∅ ) |
26 |
|
fun |
⊢ ( ( ( 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) ∧ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) : ( 𝑈 ∖ 𝑉 ) ⟶ ( Base ‘ 𝑊 ) ) ∧ ( 𝑉 ∩ ( 𝑈 ∖ 𝑉 ) ) = ∅ ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) ⟶ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) ) |
27 |
14 23 25 26
|
syl21anc |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) ⟶ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) ) |
28 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑉 ⊆ 𝑈 ) |
29 |
|
undif |
⊢ ( 𝑉 ⊆ 𝑈 ↔ ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) = 𝑈 ) |
30 |
28 29
|
sylib |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) = 𝑈 ) |
31 |
|
unidm |
⊢ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑊 ) |
32 |
31
|
a1i |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑊 ) ) |
33 |
30 32
|
feq23d |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : ( 𝑉 ∪ ( 𝑈 ∖ 𝑉 ) ) ⟶ ( ( Base ‘ 𝑊 ) ∪ ( Base ‘ 𝑊 ) ) ↔ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
34 |
27 33
|
mpbid |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) |
35 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑈 ∈ 𝑋 ) |
36 |
1 11 3
|
pwselbasb |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ↔ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
37 |
18 35 36
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ↔ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) : 𝑈 ⟶ ( Base ‘ 𝑊 ) ) ) |
38 |
34 37
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ) |
39 |
5
|
fvtresfn |
⊢ ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) = ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) ) |
40 |
38 39
|
syl |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) = ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) ) |
41 |
|
resundir |
⊢ ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) = ( ( 𝑎 ↾ 𝑉 ) ∪ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) ) |
42 |
|
ffn |
⊢ ( 𝑎 : 𝑉 ⟶ ( Base ‘ 𝑊 ) → 𝑎 Fn 𝑉 ) |
43 |
|
fnresdm |
⊢ ( 𝑎 Fn 𝑉 → ( 𝑎 ↾ 𝑉 ) = 𝑎 ) |
44 |
14 42 43
|
3syl |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( 𝑎 ↾ 𝑉 ) = 𝑎 ) |
45 |
|
disjdifr |
⊢ ( ( 𝑈 ∖ 𝑉 ) ∩ 𝑉 ) = ∅ |
46 |
|
fnconstg |
⊢ ( ( 0g ‘ 𝑊 ) ∈ V → ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) Fn ( 𝑈 ∖ 𝑉 ) ) |
47 |
15 46
|
ax-mp |
⊢ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) Fn ( 𝑈 ∖ 𝑉 ) |
48 |
|
fnresdisj |
⊢ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) Fn ( 𝑈 ∖ 𝑉 ) → ( ( ( 𝑈 ∖ 𝑉 ) ∩ 𝑉 ) = ∅ ↔ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) = ∅ ) ) |
49 |
47 48
|
mp1i |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( ( 𝑈 ∖ 𝑉 ) ∩ 𝑉 ) = ∅ ↔ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) = ∅ ) ) |
50 |
45 49
|
mpbii |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) = ∅ ) |
51 |
44 50
|
uneq12d |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ↾ 𝑉 ) ∪ ( ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ↾ 𝑉 ) ) = ( 𝑎 ∪ ∅ ) ) |
52 |
41 51
|
eqtrid |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) = ( 𝑎 ∪ ∅ ) ) |
53 |
|
un0 |
⊢ ( 𝑎 ∪ ∅ ) = 𝑎 |
54 |
52 53
|
eqtrdi |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ↾ 𝑉 ) = 𝑎 ) |
55 |
40 54
|
eqtr2d |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → 𝑎 = ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) ) |
57 |
56
|
rspceeqv |
⊢ ( ( ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ∈ 𝐵 ∧ 𝑎 = ( 𝐹 ‘ ( 𝑎 ∪ ( ( 𝑈 ∖ 𝑉 ) × { ( 0g ‘ 𝑊 ) } ) ) ) ) → ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
58 |
38 55 57
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ 𝐶 ) → ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
59 |
58
|
ralrimiva |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) |
60 |
|
dffo3 |
⊢ ( 𝐹 : 𝐵 –onto→ 𝐶 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑎 ∈ 𝐶 ∃ 𝑏 ∈ 𝐵 𝑎 = ( 𝐹 ‘ 𝑏 ) ) ) |
61 |
6 59 60
|
sylanbrc |
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 –onto→ 𝐶 ) |