Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit1.y |
⊢ 𝑌 = ( 𝑊 ↑s 𝑈 ) |
2 |
|
pwssplit1.z |
⊢ 𝑍 = ( 𝑊 ↑s 𝑉 ) |
3 |
|
pwssplit1.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
4 |
|
pwssplit1.c |
⊢ 𝐶 = ( Base ‘ 𝑍 ) |
5 |
|
pwssplit1.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 ↾ 𝑉 ) ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ 𝑌 ) |
7 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑍 ) = ( ·𝑠 ‘ 𝑍 ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑍 ) = ( Scalar ‘ 𝑍 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
11 |
|
simp1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑊 ∈ LMod ) |
12 |
|
simp2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑈 ∈ 𝑋 ) |
13 |
1
|
pwslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ) → 𝑌 ∈ LMod ) |
14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑌 ∈ LMod ) |
15 |
|
simp3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ 𝑈 ) |
16 |
12 15
|
ssexd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ∈ V ) |
17 |
2
|
pwslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ∈ V ) → 𝑍 ∈ LMod ) |
18 |
11 16 17
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝑍 ∈ LMod ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
20 |
2 19
|
pwssca |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑉 ∈ V ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑍 ) ) |
21 |
11 16 20
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑍 ) ) |
22 |
1 19
|
pwssca |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑌 ) ) |
23 |
11 12 22
|
syl2anc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑌 ) ) |
24 |
21 23
|
eqtr3d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Scalar ‘ 𝑍 ) = ( Scalar ‘ 𝑌 ) ) |
25 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
26 |
1 2 3 4 5
|
pwssplit2 |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 GrpHom 𝑍 ) ) |
27 |
25 26
|
syl3an1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 GrpHom 𝑍 ) ) |
28 |
|
snex |
⊢ { 𝑎 } ∈ V |
29 |
|
xpexg |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ { 𝑎 } ∈ V ) → ( 𝑈 × { 𝑎 } ) ∈ V ) |
30 |
12 28 29
|
sylancl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑈 × { 𝑎 } ) ∈ V ) |
31 |
|
vex |
⊢ 𝑏 ∈ V |
32 |
|
offres |
⊢ ( ( ( 𝑈 × { 𝑎 } ) ∈ V ∧ 𝑏 ∈ V ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
33 |
30 31 32
|
sylancl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
35 |
|
xpssres |
⊢ ( 𝑉 ⊆ 𝑈 → ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) = ( 𝑉 × { 𝑎 } ) ) |
36 |
35
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) = ( 𝑉 × { 𝑎 } ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) = ( 𝑉 × { 𝑎 } ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑈 × { 𝑎 } ) ↾ 𝑉 ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
39 |
34 38
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
40 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
41 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
42 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑊 ∈ LMod ) |
43 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑋 ) |
44 |
23
|
fveq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
45 |
44
|
eleq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) ) |
46 |
45
|
biimpar |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
47 |
46
|
adantrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
48 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
49 |
1 3 40 6 19 41 42 43 47 48
|
pwsvscafval |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) = ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ) |
50 |
49
|
reseq1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) = ( ( ( 𝑈 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) 𝑏 ) ↾ 𝑉 ) ) |
51 |
5
|
fvtresfn |
⊢ ( 𝑏 ∈ 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 ↾ 𝑉 ) ) |
52 |
51
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) = ( 𝑏 ↾ 𝑉 ) ) |
53 |
52
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝑏 ↾ 𝑉 ) ) ) |
54 |
39 50 53
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) ) |
55 |
3 8 6 10
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
56 |
55
|
3expb |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
57 |
14 56
|
sylan |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 ) |
58 |
5
|
fvtresfn |
⊢ ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) ) |
59 |
57 58
|
syl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ↾ 𝑉 ) ) |
60 |
16
|
adantr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → 𝑉 ∈ V ) |
61 |
1 2 3 4 5
|
pwssplit0 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
62 |
61
|
ffvelrnda |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
63 |
62
|
adantrl |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
64 |
2 4 40 7 19 41 42 60 47 63
|
pwsvscafval |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑍 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝑉 × { 𝑎 } ) ∘f ( ·𝑠 ‘ 𝑊 ) ( 𝐹 ‘ 𝑏 ) ) ) |
65 |
54 59 64
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑌 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑍 ) ( 𝐹 ‘ 𝑏 ) ) ) |
66 |
3 6 7 8 9 10 14 18 24 27 65
|
islmhmd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈 ) → 𝐹 ∈ ( 𝑌 LMHom 𝑍 ) ) |