Step |
Hyp |
Ref |
Expression |
1 |
|
pwssplit4.e |
⊢ 𝐸 = ( 𝑅 ↑s ( 𝐴 ∪ 𝐵 ) ) |
2 |
|
pwssplit4.g |
⊢ 𝐺 = ( Base ‘ 𝐸 ) |
3 |
|
pwssplit4.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
pwssplit4.k |
⊢ 𝐾 = { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) } |
5 |
|
pwssplit4.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ↾ 𝐵 ) ) |
6 |
|
pwssplit4.c |
⊢ 𝐶 = ( 𝑅 ↑s 𝐴 ) |
7 |
|
pwssplit4.d |
⊢ 𝐷 = ( 𝑅 ↑s 𝐵 ) |
8 |
|
pwssplit4.l |
⊢ 𝐿 = ( 𝐸 ↾s 𝐾 ) |
9 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) } ⊆ 𝐺 |
10 |
4 9
|
eqsstri |
⊢ 𝐾 ⊆ 𝐺 |
11 |
|
resmpt |
⊢ ( 𝐾 ⊆ 𝐺 → ( ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ↾ 𝐾 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ↾ 𝐵 ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ↾ 𝐾 ) = ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 ↾ 𝐵 ) ) |
13 |
5 12
|
eqtr4i |
⊢ 𝐹 = ( ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ↾ 𝐾 ) |
14 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
15 |
14
|
a1i |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) = ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) |
18 |
1 7 2 16 17
|
pwssplit3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐸 LMHom 𝐷 ) ) |
19 |
15 18
|
syld3an3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐸 LMHom 𝐷 ) ) |
20 |
|
simp1 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑅 ∈ LMod ) |
21 |
|
lmodgrp |
⊢ ( 𝑅 ∈ LMod → 𝑅 ∈ Grp ) |
22 |
|
grpmnd |
⊢ ( 𝑅 ∈ Grp → 𝑅 ∈ Mnd ) |
23 |
20 21 22
|
3syl |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝑅 ∈ Mnd ) |
24 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
25 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) → 𝐴 ∈ V ) |
26 |
24 25
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 → 𝐴 ∈ V ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ∈ V ) |
28 |
6 3
|
pws0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐴 ∈ V ) → ( 𝐴 × { 0 } ) = ( 0g ‘ 𝐶 ) ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 × { 0 } ) = ( 0g ‘ 𝐶 ) ) |
30 |
29
|
eqeq2d |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑦 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ↔ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) ) ) |
31 |
30
|
rabbidv |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) } = { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } ) |
32 |
4 31
|
syl5eq |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐾 = { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } ) |
33 |
24
|
a1i |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
35 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) = ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) |
36 |
1 6 2 34 35
|
pwssplit3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ) → ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) ∈ ( 𝐸 LMHom 𝐶 ) ) |
37 |
33 36
|
syld3an3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) ∈ ( 𝐸 LMHom 𝐶 ) ) |
38 |
|
fvex |
⊢ ( 0g ‘ 𝐶 ) ∈ V |
39 |
35
|
mptiniseg |
⊢ ( ( 0g ‘ 𝐶 ) ∈ V → ( ◡ ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝐶 ) } ) = { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } ) |
40 |
38 39
|
ax-mp |
⊢ ( ◡ ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝐶 ) } ) = { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } |
41 |
40
|
eqcomi |
⊢ { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } = ( ◡ ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) “ { ( 0g ‘ 𝐶 ) } ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
43 |
|
eqid |
⊢ ( LSubSp ‘ 𝐸 ) = ( LSubSp ‘ 𝐸 ) |
44 |
41 42 43
|
lmhmkerlss |
⊢ ( ( 𝑦 ∈ 𝐺 ↦ ( 𝑦 ↾ 𝐴 ) ) ∈ ( 𝐸 LMHom 𝐶 ) → { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } ∈ ( LSubSp ‘ 𝐸 ) ) |
45 |
37 44
|
syl |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → { 𝑦 ∈ 𝐺 ∣ ( 𝑦 ↾ 𝐴 ) = ( 0g ‘ 𝐶 ) } ∈ ( LSubSp ‘ 𝐸 ) ) |
46 |
32 45
|
eqeltrd |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐾 ∈ ( LSubSp ‘ 𝐸 ) ) |
47 |
43 8
|
reslmhm |
⊢ ( ( ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ∈ ( 𝐸 LMHom 𝐷 ) ∧ 𝐾 ∈ ( LSubSp ‘ 𝐸 ) ) → ( ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ↾ 𝐾 ) ∈ ( 𝐿 LMHom 𝐷 ) ) |
48 |
19 46 47
|
syl2anc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑥 ∈ 𝐺 ↦ ( 𝑥 ↾ 𝐵 ) ) ↾ 𝐾 ) ∈ ( 𝐿 LMHom 𝐷 ) ) |
49 |
13 48
|
eqeltrid |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 ∈ ( 𝐿 LMHom 𝐷 ) ) |
50 |
5
|
fvtresfn |
⊢ ( 𝑎 ∈ 𝐾 → ( 𝐹 ‘ 𝑎 ) = ( 𝑎 ↾ 𝐵 ) ) |
51 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) → 𝐵 ∈ V ) |
52 |
14 51
|
mpan |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 → 𝐵 ∈ V ) |
53 |
52
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐵 ∈ V ) |
54 |
7 3
|
pws0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ V ) → ( 𝐵 × { 0 } ) = ( 0g ‘ 𝐷 ) ) |
55 |
23 53 54
|
syl2anc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐵 × { 0 } ) = ( 0g ‘ 𝐷 ) ) |
56 |
55
|
eqcomd |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 0g ‘ 𝐷 ) = ( 𝐵 × { 0 } ) ) |
57 |
50 56
|
eqeqan12rd |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 0g ‘ 𝐷 ) ↔ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) |
58 |
|
reseq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ↾ 𝐴 ) = ( 𝑎 ↾ 𝐴 ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ↔ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ) |
60 |
59 4
|
elrab2 |
⊢ ( 𝑎 ∈ 𝐾 ↔ ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ) |
61 |
|
uneq12 |
⊢ ( ( ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) → ( ( 𝑎 ↾ 𝐴 ) ∪ ( 𝑎 ↾ 𝐵 ) ) = ( ( 𝐴 × { 0 } ) ∪ ( 𝐵 × { 0 } ) ) ) |
62 |
|
resundi |
⊢ ( 𝑎 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑎 ↾ 𝐴 ) ∪ ( 𝑎 ↾ 𝐵 ) ) |
63 |
|
xpundir |
⊢ ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) = ( ( 𝐴 × { 0 } ) ∪ ( 𝐵 × { 0 } ) ) |
64 |
61 62 63
|
3eqtr4g |
⊢ ( ( ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) → ( 𝑎 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) ) |
65 |
64
|
adantll |
⊢ ( ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) → ( 𝑎 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) ) |
66 |
65
|
adantl |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → ( 𝑎 ↾ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) ) |
67 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
68 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → 𝑅 ∈ LMod ) |
69 |
|
simp2 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) |
70 |
69
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) |
71 |
|
simprll |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → 𝑎 ∈ 𝐺 ) |
72 |
1 67 2 68 70 71
|
pwselbas |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → 𝑎 : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) |
73 |
|
ffn |
⊢ ( 𝑎 : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) → 𝑎 Fn ( 𝐴 ∪ 𝐵 ) ) |
74 |
|
fnresdm |
⊢ ( 𝑎 Fn ( 𝐴 ∪ 𝐵 ) → ( 𝑎 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑎 ) |
75 |
72 73 74
|
3syl |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → ( 𝑎 ↾ ( 𝐴 ∪ 𝐵 ) ) = 𝑎 ) |
76 |
1 3
|
pws0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) → ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) = ( 0g ‘ 𝐸 ) ) |
77 |
23 69 76
|
syl2anc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) = ( 0g ‘ 𝐸 ) ) |
78 |
1
|
pwslmod |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) → 𝐸 ∈ LMod ) |
79 |
78
|
3adant3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐸 ∈ LMod ) |
80 |
43
|
lsssubg |
⊢ ( ( 𝐸 ∈ LMod ∧ 𝐾 ∈ ( LSubSp ‘ 𝐸 ) ) → 𝐾 ∈ ( SubGrp ‘ 𝐸 ) ) |
81 |
79 46 80
|
syl2anc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐾 ∈ ( SubGrp ‘ 𝐸 ) ) |
82 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
83 |
8 82
|
subg0 |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐿 ) ) |
84 |
81 83
|
syl |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐿 ) ) |
85 |
77 84
|
eqtrd |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) = ( 0g ‘ 𝐿 ) ) |
86 |
85
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → ( ( 𝐴 ∪ 𝐵 ) × { 0 } ) = ( 0g ‘ 𝐿 ) ) |
87 |
66 75 86
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ∧ ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) ) ) → 𝑎 = ( 0g ‘ 𝐿 ) ) |
88 |
87
|
exp32 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑎 ∈ 𝐺 ∧ ( 𝑎 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) → ( ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) ) |
89 |
60 88
|
syl5bi |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑎 ∈ 𝐾 → ( ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) ) |
90 |
89
|
imp |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐾 ) → ( ( 𝑎 ↾ 𝐵 ) = ( 𝐵 × { 0 } ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) |
91 |
57 90
|
sylbid |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 0g ‘ 𝐷 ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) |
92 |
91
|
ralrimiva |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ∀ 𝑎 ∈ 𝐾 ( ( 𝐹 ‘ 𝑎 ) = ( 0g ‘ 𝐷 ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) |
93 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝐿 LMHom 𝐷 ) → 𝐹 ∈ ( 𝐿 GrpHom 𝐷 ) ) |
94 |
8 2
|
ressbas2 |
⊢ ( 𝐾 ⊆ 𝐺 → 𝐾 = ( Base ‘ 𝐿 ) ) |
95 |
10 94
|
ax-mp |
⊢ 𝐾 = ( Base ‘ 𝐿 ) |
96 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
97 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
98 |
95 16 96 97
|
ghmf1 |
⊢ ( 𝐹 ∈ ( 𝐿 GrpHom 𝐷 ) → ( 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 ) ↔ ∀ 𝑎 ∈ 𝐾 ( ( 𝐹 ‘ 𝑎 ) = ( 0g ‘ 𝐷 ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) ) |
99 |
49 93 98
|
3syl |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 ) ↔ ∀ 𝑎 ∈ 𝐾 ( ( 𝐹 ‘ 𝑎 ) = ( 0g ‘ 𝐷 ) → 𝑎 = ( 0g ‘ 𝐿 ) ) ) ) |
100 |
92 99
|
mpbird |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 ) ) |
101 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
102 |
101 16
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝐿 LMHom 𝐷 ) → 𝐹 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝐷 ) ) |
103 |
|
frn |
⊢ ( 𝐹 : ( Base ‘ 𝐿 ) ⟶ ( Base ‘ 𝐷 ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
104 |
49 102 103
|
3syl |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ran 𝐹 ⊆ ( Base ‘ 𝐷 ) ) |
105 |
|
reseq1 |
⊢ ( 𝑥 = ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) → ( 𝑥 ↾ 𝐵 ) = ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐵 ) ) |
106 |
7 67 16
|
pwselbasb |
⊢ ( ( 𝑅 ∈ LMod ∧ 𝐵 ∈ V ) → ( 𝑎 ∈ ( Base ‘ 𝐷 ) ↔ 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) |
107 |
20 53 106
|
syl2anc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝑎 ∈ ( Base ‘ 𝐷 ) ↔ 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) |
108 |
107
|
biimpa |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
109 |
3
|
fvexi |
⊢ 0 ∈ V |
110 |
109
|
fconst |
⊢ ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } |
111 |
110
|
a1i |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } ) |
112 |
23
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → 𝑅 ∈ Mnd ) |
113 |
67 3
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
114 |
112 113
|
syl |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
115 |
114
|
snssd |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → { 0 } ⊆ ( Base ‘ 𝑅 ) ) |
116 |
111 115
|
fssd |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐴 × { 0 } ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) |
117 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
118 |
|
simp3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
119 |
117 118
|
syl5eq |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐵 ∩ 𝐴 ) = ∅ ) |
120 |
119
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐵 ∩ 𝐴 ) = ∅ ) |
121 |
|
fun |
⊢ ( ( ( 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ∧ ( 𝐴 × { 0 } ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ∧ ( 𝐵 ∩ 𝐴 ) = ∅ ) → ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐵 ∪ 𝐴 ) ⟶ ( ( Base ‘ 𝑅 ) ∪ ( Base ‘ 𝑅 ) ) ) |
122 |
108 116 120 121
|
syl21anc |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐵 ∪ 𝐴 ) ⟶ ( ( Base ‘ 𝑅 ) ∪ ( Base ‘ 𝑅 ) ) ) |
123 |
|
uncom |
⊢ ( 𝐵 ∪ 𝐴 ) = ( 𝐴 ∪ 𝐵 ) |
124 |
|
unidm |
⊢ ( ( Base ‘ 𝑅 ) ∪ ( Base ‘ 𝑅 ) ) = ( Base ‘ 𝑅 ) |
125 |
123 124
|
feq23i |
⊢ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐵 ∪ 𝐴 ) ⟶ ( ( Base ‘ 𝑅 ) ∪ ( Base ‘ 𝑅 ) ) ↔ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) |
126 |
122 125
|
sylib |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) |
127 |
1 67 2
|
pwselbasb |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ) → ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐺 ↔ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
128 |
127
|
3adant3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐺 ↔ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
129 |
128
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐺 ↔ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) : ( 𝐴 ∪ 𝐵 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
130 |
126 129
|
mpbird |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐺 ) |
131 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
132 |
117 131
|
syl5eq |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐵 ∩ 𝐴 ) = ∅ ) |
133 |
|
ffn |
⊢ ( 𝑎 : 𝐵 ⟶ ( Base ‘ 𝑅 ) → 𝑎 Fn 𝐵 ) |
134 |
|
fnresdisj |
⊢ ( 𝑎 Fn 𝐵 → ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ ( 𝑎 ↾ 𝐴 ) = ∅ ) ) |
135 |
108 133 134
|
3syl |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ ( 𝑎 ↾ 𝐴 ) = ∅ ) ) |
136 |
132 135
|
mpbid |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑎 ↾ 𝐴 ) = ∅ ) |
137 |
|
fnconstg |
⊢ ( 0 ∈ V → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
138 |
|
fnresdm |
⊢ ( ( 𝐴 × { 0 } ) Fn 𝐴 → ( ( 𝐴 × { 0 } ) ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) |
139 |
109 137 138
|
mp2b |
⊢ ( ( 𝐴 × { 0 } ) ↾ 𝐴 ) = ( 𝐴 × { 0 } ) |
140 |
139
|
a1i |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐴 × { 0 } ) ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) |
141 |
136 140
|
uneq12d |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ↾ 𝐴 ) ∪ ( ( 𝐴 × { 0 } ) ↾ 𝐴 ) ) = ( ∅ ∪ ( 𝐴 × { 0 } ) ) ) |
142 |
|
resundir |
⊢ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐴 ) = ( ( 𝑎 ↾ 𝐴 ) ∪ ( ( 𝐴 × { 0 } ) ↾ 𝐴 ) ) |
143 |
|
uncom |
⊢ ( ∅ ∪ ( 𝐴 × { 0 } ) ) = ( ( 𝐴 × { 0 } ) ∪ ∅ ) |
144 |
|
un0 |
⊢ ( ( 𝐴 × { 0 } ) ∪ ∅ ) = ( 𝐴 × { 0 } ) |
145 |
143 144
|
eqtr2i |
⊢ ( 𝐴 × { 0 } ) = ( ∅ ∪ ( 𝐴 × { 0 } ) ) |
146 |
141 142 145
|
3eqtr4g |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) |
147 |
|
reseq1 |
⊢ ( 𝑦 = ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) → ( 𝑦 ↾ 𝐴 ) = ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐴 ) ) |
148 |
147
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) → ( ( 𝑦 ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ↔ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ) |
149 |
148 4
|
elrab2 |
⊢ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐾 ↔ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐺 ∧ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐴 ) = ( 𝐴 × { 0 } ) ) ) |
150 |
130 146 149
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐾 ) |
151 |
130
|
resexd |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐵 ) ∈ V ) |
152 |
5 105 150 151
|
fvmptd3 |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐹 ‘ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ) = ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐵 ) ) |
153 |
|
resundir |
⊢ ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐵 ) = ( ( 𝑎 ↾ 𝐵 ) ∪ ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) ) |
154 |
|
fnresdm |
⊢ ( 𝑎 Fn 𝐵 → ( 𝑎 ↾ 𝐵 ) = 𝑎 ) |
155 |
108 133 154
|
3syl |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑎 ↾ 𝐵 ) = 𝑎 ) |
156 |
|
ffn |
⊢ ( ( 𝐴 × { 0 } ) : 𝐴 ⟶ { 0 } → ( 𝐴 × { 0 } ) Fn 𝐴 ) |
157 |
|
fnresdisj |
⊢ ( ( 𝐴 × { 0 } ) Fn 𝐴 → ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) = ∅ ) ) |
158 |
110 156 157
|
mp2b |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) = ∅ ) |
159 |
158
|
biimpi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) = ∅ ) |
160 |
159
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) = ∅ ) |
161 |
160
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) = ∅ ) |
162 |
155 161
|
uneq12d |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ↾ 𝐵 ) ∪ ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) ) = ( 𝑎 ∪ ∅ ) ) |
163 |
|
un0 |
⊢ ( 𝑎 ∪ ∅ ) = 𝑎 |
164 |
162 163
|
eqtrdi |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ↾ 𝐵 ) ∪ ( ( 𝐴 × { 0 } ) ↾ 𝐵 ) ) = 𝑎 ) |
165 |
153 164
|
syl5eq |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ↾ 𝐵 ) = 𝑎 ) |
166 |
152 165
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐹 ‘ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ) = 𝑎 ) |
167 |
95 16
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝐿 LMHom 𝐷 ) → 𝐹 : 𝐾 ⟶ ( Base ‘ 𝐷 ) ) |
168 |
|
ffn |
⊢ ( 𝐹 : 𝐾 ⟶ ( Base ‘ 𝐷 ) → 𝐹 Fn 𝐾 ) |
169 |
49 167 168
|
3syl |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 Fn 𝐾 ) |
170 |
169
|
adantr |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → 𝐹 Fn 𝐾 ) |
171 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐾 ∧ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ∈ 𝐾 ) → ( 𝐹 ‘ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ) ∈ ran 𝐹 ) |
172 |
170 150 171
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐹 ‘ ( 𝑎 ∪ ( 𝐴 × { 0 } ) ) ) ∈ ran 𝐹 ) |
173 |
166 172
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ 𝑎 ∈ ( Base ‘ 𝐷 ) ) → 𝑎 ∈ ran 𝐹 ) |
174 |
104 173
|
eqelssd |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ran 𝐹 = ( Base ‘ 𝐷 ) ) |
175 |
|
dff1o5 |
⊢ ( 𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝐷 ) ↔ ( 𝐹 : 𝐾 –1-1→ ( Base ‘ 𝐷 ) ∧ ran 𝐹 = ( Base ‘ 𝐷 ) ) ) |
176 |
100 174 175
|
sylanbrc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝐷 ) ) |
177 |
95 16
|
islmim |
⊢ ( 𝐹 ∈ ( 𝐿 LMIso 𝐷 ) ↔ ( 𝐹 ∈ ( 𝐿 LMHom 𝐷 ) ∧ 𝐹 : 𝐾 –1-1-onto→ ( Base ‘ 𝐷 ) ) ) |
178 |
49 176 177
|
sylanbrc |
⊢ ( ( 𝑅 ∈ LMod ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑉 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → 𝐹 ∈ ( 𝐿 LMIso 𝐷 ) ) |