Metamath Proof Explorer


Theorem pwssub

Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015)

Ref Expression
Hypotheses pwsgrp.y 𝑌 = ( 𝑅s 𝐼 )
pwsinvg.b 𝐵 = ( Base ‘ 𝑌 )
pwssub.m 𝑀 = ( -g𝑅 )
pwssub.n = ( -g𝑌 )
Assertion pwssub ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹 𝐺 ) = ( 𝐹f 𝑀 𝐺 ) )

Proof

Step Hyp Ref Expression
1 pwsgrp.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsinvg.b 𝐵 = ( Base ‘ 𝑌 )
3 pwssub.m 𝑀 = ( -g𝑅 )
4 pwssub.n = ( -g𝑌 )
5 simplr ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐼𝑉 )
6 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
7 simpll ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝑅 ∈ Grp )
8 simprl ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐹𝐵 )
9 1 6 2 7 5 8 pwselbas ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
10 9 ffvelrnda ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑥𝐼 ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝑅 ) )
11 fvexd ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑥𝐼 ) → ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ∈ V )
12 9 feqmptd ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐹 = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
13 simprr ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐺𝐵 )
14 eqid ( invg𝑅 ) = ( invg𝑅 )
15 eqid ( invg𝑌 ) = ( invg𝑌 )
16 1 2 14 15 pwsinvg ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉𝐺𝐵 ) → ( ( invg𝑌 ) ‘ 𝐺 ) = ( ( invg𝑅 ) ∘ 𝐺 ) )
17 7 5 13 16 syl3anc ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( invg𝑌 ) ‘ 𝐺 ) = ( ( invg𝑅 ) ∘ 𝐺 ) )
18 1 6 2 7 5 13 pwselbas ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
19 18 ffvelrnda ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑥𝐼 ) → ( 𝐺𝑥 ) ∈ ( Base ‘ 𝑅 ) )
20 18 feqmptd ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐺 = ( 𝑥𝐼 ↦ ( 𝐺𝑥 ) ) )
21 6 14 grpinvf ( 𝑅 ∈ Grp → ( invg𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
22 21 ad2antrr ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( invg𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) )
23 22 feqmptd ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( invg𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( invg𝑅 ) ‘ 𝑦 ) ) )
24 fveq2 ( 𝑦 = ( 𝐺𝑥 ) → ( ( invg𝑅 ) ‘ 𝑦 ) = ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) )
25 19 20 23 24 fmptco ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( invg𝑅 ) ∘ 𝐺 ) = ( 𝑥𝐼 ↦ ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ) )
26 17 25 eqtrd ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( invg𝑌 ) ‘ 𝐺 ) = ( 𝑥𝐼 ↦ ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ) )
27 5 10 11 12 26 offval2 ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹f ( +g𝑅 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ) ) )
28 1 pwsgrp ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) → 𝑌 ∈ Grp )
29 2 15 grpinvcl ( ( 𝑌 ∈ Grp ∧ 𝐺𝐵 ) → ( ( invg𝑌 ) ‘ 𝐺 ) ∈ 𝐵 )
30 28 13 29 syl2an2r ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( invg𝑌 ) ‘ 𝐺 ) ∈ 𝐵 )
31 eqid ( +g𝑅 ) = ( +g𝑅 )
32 eqid ( +g𝑌 ) = ( +g𝑌 )
33 1 2 7 5 8 30 31 32 pwsplusgval ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) = ( 𝐹f ( +g𝑅 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) )
34 6 31 14 3 grpsubval ( ( ( 𝐹𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹𝑥 ) 𝑀 ( 𝐺𝑥 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ) )
35 10 19 34 syl2anc ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑥𝐼 ) → ( ( 𝐹𝑥 ) 𝑀 ( 𝐺𝑥 ) ) = ( ( 𝐹𝑥 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ) )
36 35 mpteq2dva ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) 𝑀 ( 𝐺𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) ( +g𝑅 ) ( ( invg𝑅 ) ‘ ( 𝐺𝑥 ) ) ) ) )
37 27 33 36 3eqtr4d ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) 𝑀 ( 𝐺𝑥 ) ) ) )
38 2 32 15 4 grpsubval ( ( 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) )
39 38 adantl ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹 𝐺 ) = ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) )
40 5 10 19 12 20 offval2 ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹f 𝑀 𝐺 ) = ( 𝑥𝐼 ↦ ( ( 𝐹𝑥 ) 𝑀 ( 𝐺𝑥 ) ) ) )
41 37 39 40 3eqtr4d ( ( ( 𝑅 ∈ Grp ∧ 𝐼𝑉 ) ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝐹 𝐺 ) = ( 𝐹f 𝑀 𝐺 ) )