Step |
Hyp |
Ref |
Expression |
1 |
|
pwsgrp.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
2 |
|
pwsinvg.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
pwssub.m |
⊢ 𝑀 = ( -g ‘ 𝑅 ) |
4 |
|
pwssub.n |
⊢ − = ( -g ‘ 𝑌 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑉 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
8 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐹 ∈ 𝐵 ) |
9 |
1 6 2 7 5 8
|
pwselbas |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
11 |
|
fvexd |
⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ V ) |
12 |
9
|
feqmptd |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐺 ∈ 𝐵 ) |
14 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) |
16 |
1 2 14 15
|
pwsinvg |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) = ( ( invg ‘ 𝑅 ) ∘ 𝐺 ) ) |
17 |
7 5 13 16
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) = ( ( invg ‘ 𝑅 ) ∘ 𝐺 ) ) |
18 |
1 6 2 7 5 13
|
pwselbas |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐺 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
19 |
18
|
ffvelrnda |
⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
20 |
18
|
feqmptd |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
21 |
6 14
|
grpinvf |
⊢ ( 𝑅 ∈ Grp → ( invg ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( invg ‘ 𝑅 ) : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑅 ) ) |
23 |
22
|
feqmptd |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( invg ‘ 𝑅 ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑦 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
25 |
19 20 23 24
|
fmptco |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑅 ) ∘ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
26 |
17 25
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
27 |
5 10 11 12 26
|
offval2 |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ∘f ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
28 |
1
|
pwsgrp |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) → 𝑌 ∈ Grp ) |
29 |
2 15
|
grpinvcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
30 |
28 13 29
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
31 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
32 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
33 |
1 2 7 5 8 30 31 32
|
pwsplusgval |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝐹 ∘f ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
34 |
6 31 14 3
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
35 |
10 19 34
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
36 |
35
|
mpteq2dva |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
37 |
27 33 36
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) ) ) |
38 |
2 32 15 4
|
grpsubval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
40 |
5 10 19 12 20
|
offval2 |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 ∘f 𝑀 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑀 ( 𝐺 ‘ 𝑥 ) ) ) ) |
41 |
37 39 40
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ) ∧ ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ∘f 𝑀 𝐺 ) ) |