Metamath Proof Explorer


Theorem pwstps

Description: A structure power of a topological space is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypothesis pwstps.y 𝑌 = ( 𝑅s 𝐼 )
Assertion pwstps ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → 𝑌 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 pwstps.y 𝑌 = ( 𝑅s 𝐼 )
2 eqid ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 )
3 1 2 pwsval ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → 𝑌 = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) )
4 eqid ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) = ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) )
5 fvexd ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → ( Scalar ‘ 𝑅 ) ∈ V )
6 simpr ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → 𝐼𝑉 )
7 fconst6g ( 𝑅 ∈ TopSp → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ TopSp )
8 7 adantr ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → ( 𝐼 × { 𝑅 } ) : 𝐼 ⟶ TopSp )
9 4 5 6 8 prdstps ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼 × { 𝑅 } ) ) ∈ TopSp )
10 3 9 eqeltrd ( ( 𝑅 ∈ TopSp ∧ 𝐼𝑉 ) → 𝑌 ∈ TopSp )