| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsvscaval.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsvscaval.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
pwsvscaval.s |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
| 4 |
|
pwsvscaval.t |
⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) |
| 5 |
|
pwsvscaval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑅 ) |
| 6 |
|
pwsvscaval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 7 |
|
pwsvscaval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 8 |
|
pwsvscaval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 9 |
|
pwsvscaval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 10 |
|
pwsvscaval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 11 |
1 5
|
pwsval |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑌 = ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 12 |
7 8 11
|
syl2anc |
⊢ ( 𝜑 → 𝑌 = ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑌 ) = ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 14 |
4 13
|
eqtrid |
⊢ ( 𝜑 → ∙ = ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 15 |
14
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) 𝑋 ) ) |
| 16 |
|
eqid |
⊢ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) = ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) = ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 18 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) = ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) |
| 19 |
5
|
fvexi |
⊢ 𝐹 ∈ V |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 21 |
|
fnconstg |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) |
| 22 |
7 21
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝑅 } ) Fn 𝐼 ) |
| 23 |
12
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 24 |
2 23
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 25 |
10 24
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) ) |
| 26 |
16 17 18 6 20 8 22 9 25
|
prdsvscaval |
⊢ ( 𝜑 → ( 𝐴 ( ·𝑠 ‘ ( 𝐹 Xs ( 𝐼 × { 𝑅 } ) ) ) 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 27 |
|
fvconst2g |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 28 |
7 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) = 𝑅 ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = ( ·𝑠 ‘ 𝑅 ) ) |
| 30 |
29 3
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) = · ) |
| 31 |
30
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝑋 ‘ 𝑥 ) ) ) |
| 32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 · ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ 𝐾 ) |
| 34 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ V ) |
| 35 |
|
fconstmpt |
⊢ ( 𝐼 × { 𝐴 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) |
| 36 |
35
|
a1i |
⊢ ( 𝜑 → ( 𝐼 × { 𝐴 } ) = ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ) |
| 37 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 38 |
1 37 2 7 8 10
|
pwselbas |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 39 |
38
|
feqmptd |
⊢ ( 𝜑 → 𝑋 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑥 ) ) ) |
| 40 |
8 33 34 36 39
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 · ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 41 |
32 40
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐴 ( ·𝑠 ‘ ( ( 𝐼 × { 𝑅 } ) ‘ 𝑥 ) ) ( 𝑋 ‘ 𝑥 ) ) ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| 42 |
15 26 41
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |