Metamath Proof Explorer


Theorem pwsvscaval

Description: Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsvscaval.y 𝑌 = ( 𝑅s 𝐼 )
pwsvscaval.b 𝐵 = ( Base ‘ 𝑌 )
pwsvscaval.s · = ( ·𝑠𝑅 )
pwsvscaval.t = ( ·𝑠𝑌 )
pwsvscaval.f 𝐹 = ( Scalar ‘ 𝑅 )
pwsvscaval.k 𝐾 = ( Base ‘ 𝐹 )
pwsvscaval.r ( 𝜑𝑅𝑉 )
pwsvscaval.i ( 𝜑𝐼𝑊 )
pwsvscaval.a ( 𝜑𝐴𝐾 )
pwsvscaval.x ( 𝜑𝑋𝐵 )
pwsvscaval.j ( 𝜑𝐽𝐼 )
Assertion pwsvscaval ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 pwsvscaval.y 𝑌 = ( 𝑅s 𝐼 )
2 pwsvscaval.b 𝐵 = ( Base ‘ 𝑌 )
3 pwsvscaval.s · = ( ·𝑠𝑅 )
4 pwsvscaval.t = ( ·𝑠𝑌 )
5 pwsvscaval.f 𝐹 = ( Scalar ‘ 𝑅 )
6 pwsvscaval.k 𝐾 = ( Base ‘ 𝐹 )
7 pwsvscaval.r ( 𝜑𝑅𝑉 )
8 pwsvscaval.i ( 𝜑𝐼𝑊 )
9 pwsvscaval.a ( 𝜑𝐴𝐾 )
10 pwsvscaval.x ( 𝜑𝑋𝐵 )
11 pwsvscaval.j ( 𝜑𝐽𝐼 )
12 1 2 3 4 5 6 7 8 9 10 pwsvscafval ( 𝜑 → ( 𝐴 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) )
13 12 fveq1d ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) )
14 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
15 1 14 2 7 8 10 pwselbas ( 𝜑𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) )
16 15 ffnd ( 𝜑𝑋 Fn 𝐼 )
17 eqidd ( ( 𝜑𝐽𝐼 ) → ( 𝑋𝐽 ) = ( 𝑋𝐽 ) )
18 8 9 16 17 ofc1 ( ( 𝜑𝐽𝐼 ) → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )
19 11 18 mpdan ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )
20 13 19 eqtrd ( 𝜑 → ( ( 𝐴 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋𝐽 ) ) )