| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsms.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐼 ) | 
						
							| 2 |  | eqid | ⊢ ( Scalar ‘ 𝑅 )  =  ( Scalar ‘ 𝑅 ) | 
						
							| 3 | 1 2 | pwsval | ⊢ ( ( 𝑅  ∈  ∞MetSp  ∧  𝐼  ∈  Fin )  →  𝑌  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) ) | 
						
							| 4 |  | fvexd | ⊢ ( ( 𝑅  ∈  ∞MetSp  ∧  𝐼  ∈  Fin )  →  ( Scalar ‘ 𝑅 )  ∈  V ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑅  ∈  ∞MetSp  ∧  𝐼  ∈  Fin )  →  𝐼  ∈  Fin ) | 
						
							| 6 |  | fconst6g | ⊢ ( 𝑅  ∈  ∞MetSp  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ ∞MetSp ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑅  ∈  ∞MetSp  ∧  𝐼  ∈  Fin )  →  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ ∞MetSp ) | 
						
							| 8 |  | eqid | ⊢ ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  =  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) ) | 
						
							| 9 | 8 | prdsxms | ⊢ ( ( ( Scalar ‘ 𝑅 )  ∈  V  ∧  𝐼  ∈  Fin  ∧  ( 𝐼  ×  { 𝑅 } ) : 𝐼 ⟶ ∞MetSp )  →  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  ∈  ∞MetSp ) | 
						
							| 10 | 4 5 7 9 | syl3anc | ⊢ ( ( 𝑅  ∈  ∞MetSp  ∧  𝐼  ∈  Fin )  →  ( ( Scalar ‘ 𝑅 ) Xs ( 𝐼  ×  { 𝑅 } ) )  ∈  ∞MetSp ) | 
						
							| 11 | 3 10 | eqeltrd | ⊢ ( ( 𝑅  ∈  ∞MetSp  ∧  𝐼  ∈  Fin )  →  𝑌  ∈  ∞MetSp ) |