Metamath Proof Explorer


Theorem pwuncl

Description: Power classes are closed under union. (Contributed by AV, 27-Feb-2024)

Ref Expression
Assertion pwuncl ( ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) → ( 𝐴𝐵 ) ∈ 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 unexg ( ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) → ( 𝐴𝐵 ) ∈ V )
2 elpwi ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 )
3 elpwi ( 𝐵 ∈ 𝒫 𝑋𝐵𝑋 )
4 unss ( ( 𝐴𝑋𝐵𝑋 ) ↔ ( 𝐴𝐵 ) ⊆ 𝑋 )
5 4 biimpi ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
6 2 3 5 syl2an ( ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
7 1 6 elpwd ( ( 𝐴 ∈ 𝒫 𝑋𝐵 ∈ 𝒫 𝑋 ) → ( 𝐴𝐵 ) ∈ 𝒫 𝑋 )